Cargando…
Fusion of Deep Convolution and Shallow Features to Recognize the Severity of Wheat Fusarium Head Blight
A fast and nondestructive method for recognizing the severity of wheat Fusarium head blight (FHB) can effectively reduce fungicide use and associated costs in wheat production. This study proposed a feature fusion method based on deep convolution and shallow features derived from the high-resolution...
Autores principales: | Gu, Chunyan, Wang, Daoyong, Zhang, Huihui, Zhang, Jian, Zhang, Dongyan, Liang, Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7859649/ https://www.ncbi.nlm.nih.gov/pubmed/33552097 http://dx.doi.org/10.3389/fpls.2020.599886 |
Ejemplares similares
-
Detection of wheat Fusarium head blight using UAV-based spectral and image feature fusion
por: Zhang, Hansu, et al.
Publicado: (2022) -
Exploring and applying genes to enhance the resistance to Fusarium head blight in wheat
por: Ma, Haigang, et al.
Publicado: (2022) -
Diagnosis of the Severity of Fusarium Head Blight of Wheat Ears on the Basis of Image and Spectral Feature Fusion
por: Huang, Linsheng, et al.
Publicado: (2020) -
Mapping QTLs for Fusarium Head Blight Resistance in an Interspecific Wheat Population
por: Giancaspro, Angelica, et al.
Publicado: (2016) -
Canopy and Ear Traits Associated With Avoidance of Fusarium Head Blight in Wheat
por: Jones, Stephen, et al.
Publicado: (2018)