Cargando…
Predicting aggressive histopathological features in esophageal cancer with positron emission tomography using a deep convolutional neural network
BACKGROUND: The presence of lymphovascular invasion (LVI) and perineural invasion (PNI) are of great prognostic importance in esophageal squamous cell carcinoma. Currently, positron emission tomography (PET) scans are the only means of functional assessment prior to treatment. We aimed to predict th...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7859760/ https://www.ncbi.nlm.nih.gov/pubmed/33553330 http://dx.doi.org/10.21037/atm-20-1419 |
_version_ | 1783646805402058752 |
---|---|
author | Yeh, Joe Chao-Yuan Yu, Wei-Hsiang Yang, Cheng-Kun Chien, Ling-I Lin, Ko-Han Huang, Wen-Sheng Hsu, Po-Kuei |
author_facet | Yeh, Joe Chao-Yuan Yu, Wei-Hsiang Yang, Cheng-Kun Chien, Ling-I Lin, Ko-Han Huang, Wen-Sheng Hsu, Po-Kuei |
author_sort | Yeh, Joe Chao-Yuan |
collection | PubMed |
description | BACKGROUND: The presence of lymphovascular invasion (LVI) and perineural invasion (PNI) are of great prognostic importance in esophageal squamous cell carcinoma. Currently, positron emission tomography (PET) scans are the only means of functional assessment prior to treatment. We aimed to predict the presence of LVI and PNI in esophageal squamous cell carcinoma using PET imaging data by training a three-dimensional convolution neural network (3D-CNN). METHODS: Seven hundred and ninety-eight PET scans of patients with esophageal squamous cell carcinoma and 309 PET scans of patients with stage I lung cancer were collected. In the first part of this study, we built a 3D-CNN based on a residual network, ResNet, for a task to classify the scans into esophageal cancer or lung cancer. In the second stage, we collected the PET scans of 278 patients undergoing esophagectomy for a task to classify and predict the presence of LVI/PNI. RESULTS: In the first part, the model performance attained an area under the receiver operating characteristic curve (AUC) of 0.860. In the second part, we randomly split 80%, 10%, and 10% of our dataset into training set, validation set and testing set, respectively, for a task to classify the scans into the presence of LVI/PNI and evaluated the model performance on the testing set. Our 3D-CNN model attained an AUC of 0.668 in the testing set, which shows a better discriminative ability than random guessing. CONCLUSIONS: A 3D-CNN can be trained, using PET imaging datasets, to predict LNV/PNI in esophageal cancer with acceptable accuracy. |
format | Online Article Text |
id | pubmed-7859760 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | AME Publishing Company |
record_format | MEDLINE/PubMed |
spelling | pubmed-78597602021-02-05 Predicting aggressive histopathological features in esophageal cancer with positron emission tomography using a deep convolutional neural network Yeh, Joe Chao-Yuan Yu, Wei-Hsiang Yang, Cheng-Kun Chien, Ling-I Lin, Ko-Han Huang, Wen-Sheng Hsu, Po-Kuei Ann Transl Med Original Article BACKGROUND: The presence of lymphovascular invasion (LVI) and perineural invasion (PNI) are of great prognostic importance in esophageal squamous cell carcinoma. Currently, positron emission tomography (PET) scans are the only means of functional assessment prior to treatment. We aimed to predict the presence of LVI and PNI in esophageal squamous cell carcinoma using PET imaging data by training a three-dimensional convolution neural network (3D-CNN). METHODS: Seven hundred and ninety-eight PET scans of patients with esophageal squamous cell carcinoma and 309 PET scans of patients with stage I lung cancer were collected. In the first part of this study, we built a 3D-CNN based on a residual network, ResNet, for a task to classify the scans into esophageal cancer or lung cancer. In the second stage, we collected the PET scans of 278 patients undergoing esophagectomy for a task to classify and predict the presence of LVI/PNI. RESULTS: In the first part, the model performance attained an area under the receiver operating characteristic curve (AUC) of 0.860. In the second part, we randomly split 80%, 10%, and 10% of our dataset into training set, validation set and testing set, respectively, for a task to classify the scans into the presence of LVI/PNI and evaluated the model performance on the testing set. Our 3D-CNN model attained an AUC of 0.668 in the testing set, which shows a better discriminative ability than random guessing. CONCLUSIONS: A 3D-CNN can be trained, using PET imaging datasets, to predict LNV/PNI in esophageal cancer with acceptable accuracy. AME Publishing Company 2021-01 /pmc/articles/PMC7859760/ /pubmed/33553330 http://dx.doi.org/10.21037/atm-20-1419 Text en 2021 Annals of Translational Medicine. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Original Article Yeh, Joe Chao-Yuan Yu, Wei-Hsiang Yang, Cheng-Kun Chien, Ling-I Lin, Ko-Han Huang, Wen-Sheng Hsu, Po-Kuei Predicting aggressive histopathological features in esophageal cancer with positron emission tomography using a deep convolutional neural network |
title | Predicting aggressive histopathological features in esophageal cancer with positron emission tomography using a deep convolutional neural network |
title_full | Predicting aggressive histopathological features in esophageal cancer with positron emission tomography using a deep convolutional neural network |
title_fullStr | Predicting aggressive histopathological features in esophageal cancer with positron emission tomography using a deep convolutional neural network |
title_full_unstemmed | Predicting aggressive histopathological features in esophageal cancer with positron emission tomography using a deep convolutional neural network |
title_short | Predicting aggressive histopathological features in esophageal cancer with positron emission tomography using a deep convolutional neural network |
title_sort | predicting aggressive histopathological features in esophageal cancer with positron emission tomography using a deep convolutional neural network |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7859760/ https://www.ncbi.nlm.nih.gov/pubmed/33553330 http://dx.doi.org/10.21037/atm-20-1419 |
work_keys_str_mv | AT yehjoechaoyuan predictingaggressivehistopathologicalfeaturesinesophagealcancerwithpositronemissiontomographyusingadeepconvolutionalneuralnetwork AT yuweihsiang predictingaggressivehistopathologicalfeaturesinesophagealcancerwithpositronemissiontomographyusingadeepconvolutionalneuralnetwork AT yangchengkun predictingaggressivehistopathologicalfeaturesinesophagealcancerwithpositronemissiontomographyusingadeepconvolutionalneuralnetwork AT chienlingi predictingaggressivehistopathologicalfeaturesinesophagealcancerwithpositronemissiontomographyusingadeepconvolutionalneuralnetwork AT linkohan predictingaggressivehistopathologicalfeaturesinesophagealcancerwithpositronemissiontomographyusingadeepconvolutionalneuralnetwork AT huangwensheng predictingaggressivehistopathologicalfeaturesinesophagealcancerwithpositronemissiontomographyusingadeepconvolutionalneuralnetwork AT hsupokuei predictingaggressivehistopathologicalfeaturesinesophagealcancerwithpositronemissiontomographyusingadeepconvolutionalneuralnetwork |