Cargando…
Predicting aggressive histopathological features in esophageal cancer with positron emission tomography using a deep convolutional neural network
BACKGROUND: The presence of lymphovascular invasion (LVI) and perineural invasion (PNI) are of great prognostic importance in esophageal squamous cell carcinoma. Currently, positron emission tomography (PET) scans are the only means of functional assessment prior to treatment. We aimed to predict th...
Autores principales: | Yeh, Joe Chao-Yuan, Yu, Wei-Hsiang, Yang, Cheng-Kun, Chien, Ling-I, Lin, Ko-Han, Huang, Wen-Sheng, Hsu, Po-Kuei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7859760/ https://www.ncbi.nlm.nih.gov/pubmed/33553330 http://dx.doi.org/10.21037/atm-20-1419 |
Ejemplares similares
-
Deep Convolutional Neural Network-Based Positron Emission Tomography Analysis Predicts Esophageal Cancer Outcome
por: Yang, Cheng-Kun, et al.
Publicado: (2019) -
Esophageal Papilloma Detected by Positron Emission Tomography
por: Iwamuro, Masaya, et al.
Publicado: (2019) -
Evaluation of an Automatic Classification Algorithm Using Convolutional Neural Networks in Oncological Positron Emission Tomography
por: Pinochet, Pierre, et al.
Publicado: (2021) -
Multi-slice representational learning of convolutional neural network for Alzheimer’s disease classification using positron emission tomography
por: Kim, Han Woong, et al.
Publicado: (2020) -
Positron Emission Tomography/Computed Tomography Alert Finding in an Esophageal Cancer Patient
por: Panagiotidis, Emmanouil, et al.
Publicado: (2021)