Cargando…

Quantification of cooling effects on basic tissue measurements and exposed cross-sectional brain area of cadaver heads from market pigs

The objective of this project was to determine the impact of cooling on the soft tissue thickness, cranial thickness, and cross-sectional brain area of cadaver heads from market pigs. Documenting the effect of cooling on tissue dimensions of swine heads is valuable and important for future investiga...

Descripción completa

Detalles Bibliográficos
Autores principales: Anderson, Karly N, Albers, Sarah E, Allen, Kaysie J, Bishop, Katherine D, Greco, Brian J, Huber, Christina M, Kirk, Ashlynn A, Olsen, Hannah, Vogel, Kurt D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7859908/
https://www.ncbi.nlm.nih.gov/pubmed/33569541
http://dx.doi.org/10.1093/tas/txab001
Descripción
Sumario:The objective of this project was to determine the impact of cooling on the soft tissue thickness, cranial thickness, and cross-sectional brain area of cadaver heads from market pigs. Documenting the effect of cooling on tissue dimensions of swine heads is valuable and important for future investigations of physical stunning and euthanasia methods that use cadaver heads. Scalded and dehaired cadaver heads with intact jowls were sourced from market pigs stunned with CO(2) gas. After transport to the data collection location, a penetrating captive bolt (PCB) shot (Jarvis Model PAS—Type P 0.25R Caliber Captive Bolt Pistol with Medium Rod Assembly and Blue Powder Cartridges) was applied in the frontal position. Following PCB application, each head (n = 36) underwent an UNCHILLED treatment followed by CHILLED treatment. The UNCHILLED treatment involved images collected immediately after splitting each head along the bolt path, and the CHILLED treatment involved images of the same heads after storage in a walk-in cooler for 24 h at 2 to 4°C. All measurements for each treatment were collected from images of the heads on the plane of the bolt path immediately prior to and immediately after the refrigeration treatment. Measurements were performed by two observers. Across all measurements, mean interobserver coefficient of variation was 11.3 ± 0.6%. The soft tissue caudal to the bolt path was different (P = 0.0120) between treatments (CHILLED: 6.4 ± 0.2 mm; UNCHILLED: 7.2 ± 0.2 mm). The soft tissue thickness rostral to the bolt path was different (P = 0.0378) between treatments (CHILLED: 5.5 ± 0.2 mm; UNCHILLED: 6.1 ± 0.2 mm). Cranial thickness caudal to the bolt path was not different (P = 0.8659; CHILLED: 18.1 ± 0.6 mm; UNCHILLED: 18.3 ± 0.6 mm), nor was there a significant difference (P = 0.2593) in cranial thickness rostral to the bolt path between treatments (CHILLED: 16.2 ± 0.6 mm; UNCHILLED: 15.2 ± 0.6 mm). Cross-sectional brain area did not differ (P = 0.0737; CHILLED: 3633.4 ± 44.1 mm; UNCHILLED: 3519.9 ± 44.1 mm). A correction factor of 1.12 was determined from this study for cases where estimation of UNCHILLED soft tissue thickness from CHILLED soft tissue thickness is necessary.