Cargando…
Differentiation of Pseudoprogression from True Progressionin Glioblastoma Patients after Standard Treatment: A Machine Learning Strategy Combinedwith Radiomics Features from T(1)-weighted Contrast-enhanced Imaging
BACKGROUND: Based on conventional MRI images, it is difficult to differentiatepseudoprogression from true progressionin GBM patients after standard treatment, which isa critical issue associated with survival. The aim of this study was to evaluate the diagnostic performance of machine learning using...
Autores principales: | Sun, Ying-Zhi, Yan, Lin-Feng, Han, Yu, Nan, Hai-Yan, Xiao, Gang, Tian, Qiang, Pu, Wen-Hui, Li, Ze-Yang, Wei, Xiao-Cheng, Wang, Wen, Cui, Guang-Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7860032/ https://www.ncbi.nlm.nih.gov/pubmed/33535988 http://dx.doi.org/10.1186/s12880-020-00545-5 |
Ejemplares similares
-
Glioblastoma pseudoprogression and true progression reveal spatially variable transcriptional differences
por: Wang, Wesley, et al.
Publicado: (2023) -
Radiomic Analysis to Predict Histopathologically Confirmed Pseudoprogression in Glioblastoma Patients
por: McKenney, Anna Sophia, et al.
Publicado: (2022) -
Combination of IVIM-DWI and 3D-ASL for differentiating true progression from pseudoprogression of Glioblastoma multiforme after concurrent chemoradiotherapy: study protocol of a prospective diagnostic trial
por: Liu, Zhi-Cheng, et al.
Publicado: (2017) -
Three‐dimensional echo planar spectroscopic imaging for differentiation of true progression from pseudoprogression in patients with glioblastoma
por: Verma, Gaurav, et al.
Publicado: (2018) -
NEIM-02 DEVELOPMENT OF A DEEP LEARNING MODEL FOR DISCRIMINATING TRUE PROGRESSION FROM PSEUDOPROGRESSION IN GLIOBLASTOMA PATIENTS
por: Moassefi, Mana, et al.
Publicado: (2022)