Cargando…
Using Bibliometric Analysis and Machine Learning to Identify Compounds Binding to Sialidase-1
[Image: see text] Rare diseases impact hundreds of millions of individuals worldwide. However, few therapies exist to treat the rare disease population because financial resources are limited, the number of patients affected is low, bioactivity data is often nonexistent, and very few animal models e...
Autores principales: | Klein, Jennifer J., Baker, Nancy C., Foil, Daniel H., Zorn, Kimberley M., Urbina, Fabio, Puhl, Ana C., Ekins, Sean |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7860073/ https://www.ncbi.nlm.nih.gov/pubmed/33553934 http://dx.doi.org/10.1021/acsomega.0c05591 |
Ejemplares similares
-
Correction to “Using Bibliometric Analysis
and Machine Learning to Identify Compounds Binding to Sialidase-1”
por: Klein, Jennifer J., et al.
Publicado: (2021) -
Machine Learning for Discovery of GSK3β Inhibitors
por: Vignaux, Patricia A., et al.
Publicado: (2020) -
Computational Approaches to Identify Molecules Binding
to Mycobacterium tuberculosis KasA
por: Puhl, Ana C., et al.
Publicado: (2020) -
Validation
of Acetylcholinesterase Inhibition Machine
Learning Models for Multiple Species
por: Vignaux, Patricia A., et al.
Publicado: (2023) -
A Machine Learning Strategy for Drug Discovery Identifies
Anti-Schistosomal Small Molecules
por: Zorn, Kimberley M., et al.
Publicado: (2021)