Cargando…

NMF-Based Spectral Deconvolution with a Web Platform GC Mixture Touch

[Image: see text] Complete separation of chemicals in a complex mixture is far from being achieved even with the current high-performance separation technology, such as gas chromatography–mass spectrometry (GC–MS). Several deconvolution techniques based on multivariate curve resolution (MCR), or mod...

Descripción completa

Detalles Bibliográficos
Autor principal: Zushi, Yasuyuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7860082/
https://www.ncbi.nlm.nih.gov/pubmed/33553892
http://dx.doi.org/10.1021/acsomega.0c04982
_version_ 1783646869204762624
author Zushi, Yasuyuki
author_facet Zushi, Yasuyuki
author_sort Zushi, Yasuyuki
collection PubMed
description [Image: see text] Complete separation of chemicals in a complex mixture is far from being achieved even with the current high-performance separation technology, such as gas chromatography–mass spectrometry (GC–MS). Several deconvolution techniques based on multivariate curve resolution (MCR), or model peak methods, which are represented by AMDIS, have been developed to address the above-mentioned issue. The model peak methods have been developed to provide easy-to-use tools, including AMDIS, but are limited for MCR with approximation methods. The objective of this study was to provide an easy-to-use deconvolution tool based on the MCR approach for GC–MS data. The spectral deconvolution tool based on non-negative matrix factorization (NMF), which calculates outputs using an approximation method, was implemented as a free web platform, namely, GC Mixture Touch, clarifying the effects of the parameters required for the deconvolution. The GC Mixture Touch was applied to the actual mixture sample of road dust spiked with chemical standards. The recommended parameter settings for smoothing of the chromatogram, the number of ranks, and the NMF algorithm for the deconvolution were clarified through the study. The performance with the suggested parameters was evaluated with respect to compound identification for the actual sample. All of the test compounds in the sample were correctly identified with the GC Mixture Touch, outperforming AMDIS with respect to the identification. The GC Mixture Touch is easy to use on the web even for users without programming skills. This is expected to enhance the application of the NMF-based deconvolution, and it should prove helpful in finding the compounds hidden in complex mixtures that are difficult to find using conventional approaches.
format Online
Article
Text
id pubmed-7860082
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-78600822021-02-05 NMF-Based Spectral Deconvolution with a Web Platform GC Mixture Touch Zushi, Yasuyuki ACS Omega [Image: see text] Complete separation of chemicals in a complex mixture is far from being achieved even with the current high-performance separation technology, such as gas chromatography–mass spectrometry (GC–MS). Several deconvolution techniques based on multivariate curve resolution (MCR), or model peak methods, which are represented by AMDIS, have been developed to address the above-mentioned issue. The model peak methods have been developed to provide easy-to-use tools, including AMDIS, but are limited for MCR with approximation methods. The objective of this study was to provide an easy-to-use deconvolution tool based on the MCR approach for GC–MS data. The spectral deconvolution tool based on non-negative matrix factorization (NMF), which calculates outputs using an approximation method, was implemented as a free web platform, namely, GC Mixture Touch, clarifying the effects of the parameters required for the deconvolution. The GC Mixture Touch was applied to the actual mixture sample of road dust spiked with chemical standards. The recommended parameter settings for smoothing of the chromatogram, the number of ranks, and the NMF algorithm for the deconvolution were clarified through the study. The performance with the suggested parameters was evaluated with respect to compound identification for the actual sample. All of the test compounds in the sample were correctly identified with the GC Mixture Touch, outperforming AMDIS with respect to the identification. The GC Mixture Touch is easy to use on the web even for users without programming skills. This is expected to enhance the application of the NMF-based deconvolution, and it should prove helpful in finding the compounds hidden in complex mixtures that are difficult to find using conventional approaches. American Chemical Society 2021-01-19 /pmc/articles/PMC7860082/ /pubmed/33553892 http://dx.doi.org/10.1021/acsomega.0c04982 Text en © 2021 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.
spellingShingle Zushi, Yasuyuki
NMF-Based Spectral Deconvolution with a Web Platform GC Mixture Touch
title NMF-Based Spectral Deconvolution with a Web Platform GC Mixture Touch
title_full NMF-Based Spectral Deconvolution with a Web Platform GC Mixture Touch
title_fullStr NMF-Based Spectral Deconvolution with a Web Platform GC Mixture Touch
title_full_unstemmed NMF-Based Spectral Deconvolution with a Web Platform GC Mixture Touch
title_short NMF-Based Spectral Deconvolution with a Web Platform GC Mixture Touch
title_sort nmf-based spectral deconvolution with a web platform gc mixture touch
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7860082/
https://www.ncbi.nlm.nih.gov/pubmed/33553892
http://dx.doi.org/10.1021/acsomega.0c04982
work_keys_str_mv AT zushiyasuyuki nmfbasedspectraldeconvolutionwithawebplatformgcmixturetouch