Cargando…

Nano-size dependence in the adsorption by the SARS-CoV-2 spike protein over gold colloid

Gold nano-particles were coated with the spike protein (S protein) of SARS-CoV-2 and exposed to increasingly acidic conditions. Their responses were investigated by monitoring the surface plasmon resonance (SPR) band shift. As the external pH was gradually changed from neutral pH to pH ∼2 the peak o...

Descripción completa

Detalles Bibliográficos
Autores principales: Yokoyama, Kazushige, Ichiki, Akane
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7860964/
https://www.ncbi.nlm.nih.gov/pubmed/33564211
http://dx.doi.org/10.1016/j.colsurfa.2021.126275
Descripción
Sumario:Gold nano-particles were coated with the spike protein (S protein) of SARS-CoV-2 and exposed to increasingly acidic conditions. Their responses were investigated by monitoring the surface plasmon resonance (SPR) band shift. As the external pH was gradually changed from neutral pH to pH ∼2 the peak of the SPR band showed a significant red-shift, with a sigmoidal feature implying the formation of the gold-protein aggregates. The coating of S protein changed the surface property of the gold enough to extract the coverage fraction of protein over nano particles, Θ, which did not exhibit clear nano-size dependence. The geometrical simulation to explain Θ showed the average axial length to be a = 7. 25 nm and b =8.00 nm when the S-protein was hypothesized as a prolate shape with spiking-out orientation. As the pH value externally hopped between pH∼3 and pH∼10, a behavior of reversible protein folding was observed for particles with diameters >30 nm. It was concluded that S protein adsorption conformation was impacted by the size (diameter, d) of a core nano-gold, where head-to-head dimerized S protein was estimated for d ≤ 80 nm and a parallel in opposite directions formation for d = 100 nm.