Cargando…
Performance of Deep Transfer Learning for Detecting Abnormal Fundus Images
PURPOSE: To develop and validate a deep transfer learning (DTL) algorithm for detecting abnormalities in fundus images from non-mydriatic fundus photography examinations. METHODS: A total of 1295 fundus images were collected to develop and validate a DTL algorithm for detecting abnormal fundus image...
Autores principales: | Yu, Yan, Chen, Xiao, Zhu, XiangBing, Zhang, PengFei, Hou, YinFen, Zhang, RongRong, Wu, ChangFan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861106/ https://www.ncbi.nlm.nih.gov/pubmed/33553839 http://dx.doi.org/10.4103/JOCO.JOCO_123_20 |
Ejemplares similares
-
Predictors of visual recovery in patients with macular edema secondary to central retinal vein occlusion after treatment with Conbercept
por: Zhang, Qi, et al.
Publicado: (2021) -
Performance of Deep Learning Architectures and Transfer Learning for Detecting Glaucomatous Optic Neuropathy in Fundus Photographs
por: Christopher, Mark, et al.
Publicado: (2018) -
A deep learning model for generating fundus autofluorescence images from color fundus photography
por: Song, Fan, et al.
Publicado: (2023) -
Multimodal deep learning of fundus abnormalities and traditional risk factors for cardiovascular risk prediction
por: Lee, Yeong Chan, et al.
Publicado: (2023) -
Prediction of Different Eye Diseases Based on Fundus Photography via Deep Transfer Learning
por: Guo, Chen, et al.
Publicado: (2021)