Cargando…
The Generative Adversarial Brain
The idea that the brain learns generative models of the world has been widely promulgated. Most approaches have assumed that the brain learns an explicit density model that assigns a probability to each possible state of the world. However, explicit density models are difficult to learn, requiring a...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861215/ https://www.ncbi.nlm.nih.gov/pubmed/33733107 http://dx.doi.org/10.3389/frai.2019.00018 |
_version_ | 1783647036881502208 |
---|---|
author | Gershman, Samuel J. |
author_facet | Gershman, Samuel J. |
author_sort | Gershman, Samuel J. |
collection | PubMed |
description | The idea that the brain learns generative models of the world has been widely promulgated. Most approaches have assumed that the brain learns an explicit density model that assigns a probability to each possible state of the world. However, explicit density models are difficult to learn, requiring approximate inference techniques that may find poor solutions. An alternative approach is to learn an implicit density model that can sample from the generative model without evaluating the probabilities of those samples. The implicit model can be trained to fool a discriminator into believing that the samples are real. This is the idea behind generative adversarial algorithms, which have proven adept at learning realistic generative models. This paper develops an adversarial framework for probabilistic computation in the brain. It first considers how generative adversarial algorithms overcome some of the problems that vex prior theories based on explicit density models. It then discusses the psychological and neural evidence for this framework, as well as how the breakdown of the generator and discriminator could lead to delusions observed in some mental disorders. |
format | Online Article Text |
id | pubmed-7861215 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78612152021-03-16 The Generative Adversarial Brain Gershman, Samuel J. Front Artif Intell Artificial Intelligence The idea that the brain learns generative models of the world has been widely promulgated. Most approaches have assumed that the brain learns an explicit density model that assigns a probability to each possible state of the world. However, explicit density models are difficult to learn, requiring approximate inference techniques that may find poor solutions. An alternative approach is to learn an implicit density model that can sample from the generative model without evaluating the probabilities of those samples. The implicit model can be trained to fool a discriminator into believing that the samples are real. This is the idea behind generative adversarial algorithms, which have proven adept at learning realistic generative models. This paper develops an adversarial framework for probabilistic computation in the brain. It first considers how generative adversarial algorithms overcome some of the problems that vex prior theories based on explicit density models. It then discusses the psychological and neural evidence for this framework, as well as how the breakdown of the generator and discriminator could lead to delusions observed in some mental disorders. Frontiers Media S.A. 2019-09-18 /pmc/articles/PMC7861215/ /pubmed/33733107 http://dx.doi.org/10.3389/frai.2019.00018 Text en Copyright © 2019 Gershman. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Artificial Intelligence Gershman, Samuel J. The Generative Adversarial Brain |
title | The Generative Adversarial Brain |
title_full | The Generative Adversarial Brain |
title_fullStr | The Generative Adversarial Brain |
title_full_unstemmed | The Generative Adversarial Brain |
title_short | The Generative Adversarial Brain |
title_sort | generative adversarial brain |
topic | Artificial Intelligence |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861215/ https://www.ncbi.nlm.nih.gov/pubmed/33733107 http://dx.doi.org/10.3389/frai.2019.00018 |
work_keys_str_mv | AT gershmansamuelj thegenerativeadversarialbrain AT gershmansamuelj generativeadversarialbrain |