Cargando…
On Consequentialism and Fairness
Recent work on fairness in machine learning has primarily emphasized how to define, quantify, and encourage “fair” outcomes. Less attention has been paid, however, to the ethical foundations which underlie such efforts. Among the ethical perspectives that should be taken into consideration is conseq...
Autores principales: | Card, Dallas, Smith, Noah A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861221/ https://www.ncbi.nlm.nih.gov/pubmed/33733152 http://dx.doi.org/10.3389/frai.2020.00034 |
Ejemplares similares
-
Tuning Fairness by Balancing Target Labels
por: Kehrenberg, Thomas, et al.
Publicado: (2020) -
Facing the Challenges of Developing Fair Risk Scoring Models
por: Szepannek, Gero, et al.
Publicado: (2021) -
A United States Fair Lending Perspective on Machine Learning
por: Hall, Patrick, et al.
Publicado: (2021) -
Sysrev: A FAIR Platform for Data Curation and Systematic Evidence Review
por: Bozada, Thomas, et al.
Publicado: (2021) -
Research agenda for algorithmic fairness studies: Access to justice lessons for interdisciplinary research
por: Kontiainen, Laura, et al.
Publicado: (2022)