Cargando…
Interpretability With Accurate Small Models
Models often need to be constrained to a certain size for them to be considered interpretable. For example, a decision tree of depth 5 is much easier to understand than one of depth 50. Limiting model size, however, often reduces accuracy. We suggest a practical technique that minimizes this trade-o...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861231/ https://www.ncbi.nlm.nih.gov/pubmed/33733123 http://dx.doi.org/10.3389/frai.2020.00003 |
Sumario: | Models often need to be constrained to a certain size for them to be considered interpretable. For example, a decision tree of depth 5 is much easier to understand than one of depth 50. Limiting model size, however, often reduces accuracy. We suggest a practical technique that minimizes this trade-off between interpretability and classification accuracy. This enables an arbitrary learning algorithm to produce highly accurate small-sized models. Our technique identifies the training data distribution to learn from that leads to the highest accuracy for a model of a given size. We represent the training distribution as a combination of sampling schemes. Each scheme is defined by a parameterized probability mass function applied to the segmentation produced by a decision tree. An Infinite Mixture Model with Beta components is used to represent a combination of such schemes. The mixture model parameters are learned using Bayesian Optimization. Under simplistic assumptions, we would need to optimize for O(d) variables for a distribution over a d-dimensional input space, which is cumbersome for most real-world data. However, we show that our technique significantly reduces this number to a fixed set of eight variables at the cost of relatively cheap preprocessing. The proposed technique is flexible: it is model-agnostic, i.e., it may be applied to the learning algorithm for any model family, and it admits a general notion of model size. We demonstrate its effectiveness using multiple real-world datasets to construct decision trees, linear probability models and gradient boosted models with different sizes. We observe significant improvements in the F1-score in most instances, exceeding an improvement of 100% in some cases. |
---|