Cargando…
Information Theoretic Characterization of Uncertainty Distinguishes Surprise From Accuracy Signals in the Brain
Uncertainty presents a problem for both human and machine decision-making. While utility maximization has traditionally been viewed as the motive force behind choice behavior, it has been theorized that uncertainty minimization may supersede reward motivation. Beyond reward, decisions are guided by...
Autores principales: | Loued-Khenissi, Leyla, Preuschoff, Kerstin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861235/ https://www.ncbi.nlm.nih.gov/pubmed/33733125 http://dx.doi.org/10.3389/frai.2020.00005 |
Ejemplares similares
-
AlphaZe∗∗: AlphaZero-like baselines for imperfect information games are surprisingly strong
por: Blüml, Jannis, et al.
Publicado: (2023) -
Comparison of Structural Parsers and Neural Language Models as Surprisal Estimators
por: Oh, Byung-Doh, et al.
Publicado: (2022) -
Evaluating and selecting arguments in the context of higher order uncertainty
por: Straßer, Christian, et al.
Publicado: (2023) -
General-Purpose Bayesian Tensor Learning With Automatic Rank Determination and Uncertainty Quantification
por: Zhang, Kaiqi, et al.
Publicado: (2022) -
The effect of uncertainty on pain decisions for self and others
por: Loued‐Khenissi, Leyla, et al.
Publicado: (2022)