Cargando…
Using Word Embeddings to Learn a Better Food Ontology
Food ontologies require significant effort to create and maintain as they involve manual and time-consuming tasks, often with limited alignment to the underlying food science knowledge. We propose a semi-supervised framework for the automated ontology population from an existing ontology scaffold by...
Autores principales: | Youn, Jason, Naravane, Tarini, Tagkopoulos, Ilias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861243/ https://www.ncbi.nlm.nih.gov/pubmed/33733222 http://dx.doi.org/10.3389/frai.2020.584784 |
Ejemplares similares
-
Ontological how and why: action and objective of planned processes in the food domain
por: Dooley, Damion, et al.
Publicado: (2023) -
Augmenting Semantic Lexicons Using Word Embeddings and Transfer Learning
por: Alshaabi, Thayer, et al.
Publicado: (2022) -
Machine learning models to predict micronutrient profile in food after processing
por: Naravane, Tarini, et al.
Publicado: (2023) -
Impact analysis of keyword extraction using contextual word embedding
por: Khan, Muhammad Qasim, et al.
Publicado: (2022) -
Deepfake tweets classification using stacked Bi-LSTM and words embedding
por: Rupapara, Vaibhav, et al.
Publicado: (2021)