Cargando…
Learning to Play the Chess Variant Crazyhouse Above World Champion Level With Deep Neural Networks and Human Data
Deep neural networks have been successfully applied in learning the board games Go, chess, and shogi without prior knowledge by making use of reinforcement learning. Although starting from zero knowledge has been shown to yield impressive results, it is associated with high computationally costs esp...
Autores principales: | Czech, Johannes, Willig, Moritz, Beyer, Alena, Kersting, Kristian, Fürnkranz, Johannes |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861260/ https://www.ncbi.nlm.nih.gov/pubmed/33733143 http://dx.doi.org/10.3389/frai.2020.00024 |
Ejemplares similares
-
AlphaZe∗∗: AlphaZero-like baselines for imperfect information games are surprisingly strong
por: Blüml, Jannis, et al.
Publicado: (2023) -
An Empirical Investigation Into Deep and Shallow Rule Learning
por: Beck, Florian, et al.
Publicado: (2021) -
Rule Extraction From Binary Neural Networks With Convolutional Rules for Model Validation
por: Burkhardt, Sophie, et al.
Publicado: (2021) -
Declarative Learning-Based Programming as an Interface to AI Systems
por: Kordjamshidi, Parisa, et al.
Publicado: (2022) -
The Moral Choice Machine
por: Schramowski, Patrick, et al.
Publicado: (2020)