Cargando…
Analysis of Features Selected by a Deep Learning Model for Differential Treatment Selection in Depression
Background: Deep learning has utility in predicting differential antidepressant treatment response among patients with major depressive disorder, yet there remains a paucity of research describing how to interpret deep learning models in a clinically or etiologically meaningful way. In this paper, w...
Autores principales: | Mehltretter, Joseph, Rollins, Colleen, Benrimoh, David, Fratila, Robert, Perlman, Kelly, Israel, Sonia, Miresco, Marc, Wakid, Marina, Turecki, Gustavo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861264/ https://www.ncbi.nlm.nih.gov/pubmed/33733120 http://dx.doi.org/10.3389/frai.2019.00031 |
Ejemplares similares
-
Identification of Suicidal Ideation in the Canadian Community Health Survey—Mental Health Component Using Deep Learning
por: Desai, Sneha, et al.
Publicado: (2021) -
Deep fake detection using cascaded deep sparse auto-encoder for effective feature selection
por: Balasubramanian, Saravana Balaji, et al.
Publicado: (2022) -
Crop genomic selection with deep learning and environmental data: A survey
por: Jubair, Sheikh, et al.
Publicado: (2023) -
Enhancing neural collaborative filtering using hybrid feature selection for recommendation
por: Drammeh, Baboucarr, et al.
Publicado: (2023) -
An evolutionary decomposition-based multi-objective feature selection for multi-label classification
por: Asilian Bidgoli, Azam, et al.
Publicado: (2020)