Cargando…
EmotionNet Nano: An Efficient Deep Convolutional Neural Network Design for Real-Time Facial Expression Recognition
While recent advances in deep learning have led to significant improvements in facial expression classification (FEC), a major challenge that remains a bottleneck for the widespread deployment of such systems is their high architectural and computational complexities. This is especially challenging...
Autores principales: | Lee, James Ren, Wang, Linda, Wong, Alexander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861268/ https://www.ncbi.nlm.nih.gov/pubmed/33733225 http://dx.doi.org/10.3389/frai.2020.609673 |
Ejemplares similares
-
Deep convolutional neural networks for regular texture recognition
por: Liu, Ni, et al.
Publicado: (2022) -
Fibrosis-Net: A Tailored Deep Convolutional Neural Network Design for Prediction of Pulmonary Fibrosis Progression From Chest CT Images
por: Wong, Alexander, et al.
Publicado: (2021) -
TB-Net: A Tailored, Self-Attention Deep Convolutional Neural Network Design for Detection of Tuberculosis Cases From Chest X-Ray Images
por: Wong, Alexander, et al.
Publicado: (2022) -
A space and time efficient convolutional neural network for age group estimation from facial images
por: Alsaleh, Ahmad, et al.
Publicado: (2023) -
Configural relations in humans and deep convolutional neural networks
por: Baker, Nicholas, et al.
Publicado: (2023)