Cargando…
Prognostic Value of Transfer Learning Based Features in Resectable Pancreatic Ductal Adenocarcinoma
Background: Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most aggressive cancers with an extremely poor prognosis. Radiomics has shown prognostic ability in multiple types of cancer including PDAC. However, the prognostic value of traditional radiomics pipelines, which are based on hand-cra...
Autores principales: | Zhang, Yucheng, Lobo-Mueller, Edrise M., Karanicolas, Paul, Gallinger, Steven, Haider, Masoom A., Khalvati, Farzad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861273/ https://www.ncbi.nlm.nih.gov/pubmed/33733206 http://dx.doi.org/10.3389/frai.2020.550890 |
Ejemplares similares
-
Prognostic Value of CT Radiomic Features in Resectable Pancreatic Ductal Adenocarcinoma
por: Khalvati, Farzad, et al.
Publicado: (2019) -
Improving prognostic performance in resectable pancreatic ductal adenocarcinoma using radiomics and deep learning features fusion in CT images
por: Zhang, Yucheng, et al.
Publicado: (2021) -
CNN-based survival model for pancreatic ductal adenocarcinoma in medical imaging
por: Zhang, Yucheng, et al.
Publicado: (2020) -
CT texture features are associated with overall survival in pancreatic ductal adenocarcinoma – a quantitative analysis
por: Eilaghi, Armin, et al.
Publicado: (2017) -
A Modified AUC for Training Convolutional Neural Networks: Taking Confidence Into Account
por: Namdar, Khashayar, et al.
Publicado: (2021)