Cargando…
Exploratory-Phase-Free Estimation of GP Hyperparameters in Sequential Design Methods—At the Example of Bayesian Inverse Problems
Methods for sequential design of computer experiments typically consist of two phases. In the first phase, the exploratory phase, a space-filling initial design is used to estimate hyperparameters of a Gaussian process emulator (GPE) and to provide some initial global exploration of the model functi...
Autores principales: | Sinsbeck, Michael, Höge, Marvin, Nowak, Wolfgang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861299/ https://www.ncbi.nlm.nih.gov/pubmed/33733169 http://dx.doi.org/10.3389/frai.2020.00052 |
Ejemplares similares
-
Neural network hyperparameter optimization for prediction of real estate prices in Helsinki
por: Kalliola, Jussi, et al.
Publicado: (2021) -
Accelerating Hyperparameter Tuning in Machine Learning for Alzheimer’s Disease With High Performance Computing
por: Zhang, Fan, et al.
Publicado: (2021) -
Deep learning methods for inverse problems
por: Kamyab, Shima, et al.
Publicado: (2022) -
Integrated Evolutionary Learning: An Artificial Intelligence Approach to Joint Learning of Features and Hyperparameters for Optimized, Explainable Machine Learning
por: de Lacy, Nina, et al.
Publicado: (2022) -
Teaching Multiple Inverse Reinforcement Learners
por: Melo, Francisco S., et al.
Publicado: (2021)