Cargando…
Q-Finder: An Algorithm for Credible Subgroup Discovery in Clinical Data Analysis — An Application to the International Diabetes Management Practice Study
Addressing the heterogeneity of both the outcome of a disease and the treatment response to an intervention is a mandatory pathway for regulatory approval of medicines. In randomized clinical trials (RCTs), confirmatory subgroup analyses focus on the assessment of drugs in predefined subgroups, whil...
Autores principales: | Esnault, Cyril, Gadonna, May-Line, Queyrel, Maxence, Templier, Alexandre, Zucker, Jean-Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861304/ https://www.ncbi.nlm.nih.gov/pubmed/33733209 http://dx.doi.org/10.3389/frai.2020.559927 |
Ejemplares similares
-
Qluster: An easy-to-implement generic workflow for robust clustering of health data
por: Esnault, Cyril, et al.
Publicado: (2023) -
Stance detection with BERT embeddings for credibility analysis of information on social media
por: Karande, Hema, et al.
Publicado: (2021) -
Diversity in people's reluctance to use medical artificial intelligence: Identifying subgroups through latent profile analysis
por: Wang, Haixia, et al.
Publicado: (2022) -
Estimating Successful Internal Mobility: A Comparison Between Structural Equation Models and Machine Learning Algorithms
por: Bossi, Francesco, et al.
Publicado: (2022) -
Discovery of Physics From Data: Universal Laws and Discrepancies
por: de Silva, Brian M., et al.
Publicado: (2020)