Cargando…
Applied Machine Learning for Stochastic Local Volatility Calibration
Stochastic volatility models are a popular choice to price and risk–manage financial derivatives on equity and foreign exchange. For the calibration of stochastic local volatility models a crucial step is the estimation of the expectated variance conditional on the realized spot. The spot is given b...
Autor principal: | Hakala, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861308/ https://www.ncbi.nlm.nih.gov/pubmed/33733093 http://dx.doi.org/10.3389/frai.2019.00004 |
Ejemplares similares
-
Topology Applied to Machine Learning: From Global to Local
por: Adams, Henry, et al.
Publicado: (2021) -
Machine Learning Applied to the Search for Nonlinear Features in Breeding Populations
por: Gabur, Iulian, et al.
Publicado: (2022) -
Pathfinding in stochastic environments: learning vs planning
por: Skrynnik, Alexey, et al.
Publicado: (2022) -
Stochastic attentions and context learning for person re-identification
por: Perwaiz, Nazia, et al.
Publicado: (2021) -
Stochastic Learning in Kolkata Paise Restaurant Problem: Classical and Quantum Strategies
por: Chakrabarti, Bikas K., et al.
Publicado: (2022)