Cargando…
There Is Hope After All: Quantifying Opinion and Trustworthiness in Neural Networks
Artificial Intelligence (AI) plays a fundamental role in the modern world, especially when used as an autonomous decision maker. One common concern nowadays is “how trustworthy the AIs are.” Human operators follow a strict educational curriculum and performance assessment that could be exploited to...
Autores principales: | Cheng, Mingxi, Nazarian, Shahin, Bogdan, Paul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861320/ https://www.ncbi.nlm.nih.gov/pubmed/33733171 http://dx.doi.org/10.3389/frai.2020.00054 |
Ejemplares similares
-
Financial Risk Management and Explainable, Trustworthy, Responsible AI
por: Fritz-Morgenthal, Sebastian, et al.
Publicado: (2022) -
Deep Learnability: Using Neural Networks to Quantify Language Similarity and Learnability
por: Cohen, Clara, et al.
Publicado: (2020) -
Editorial: Explainable, Trustworthy, and Responsible AI for the Financial Service Industry
por: Hadji Misheva, Branka, et al.
Publicado: (2022) -
The assessment list for trustworthy artificial intelligence: A review and recommendations
por: Radclyffe, Charles, et al.
Publicado: (2023) -
Opinion Formation on the Internet: The Influence of Personality, Network Structure, and Content on Sharing Messages Online
por: Burbach, Laura, et al.
Publicado: (2020)