Cargando…
Deep Active Inference and Scene Construction
Adaptive agents must act in intrinsically uncertain environments with complex latent structure. Here, we elaborate a model of visual foraging—in a hierarchical context—wherein agents infer a higher-order visual pattern (a “scene”) by sequentially sampling ambiguous cues. Inspired by previous models...
Autores principales: | Heins, R. Conor, Mirza, M. Berk, Parr, Thomas, Friston, Karl, Kagan, Igor, Pooresmaeili, Arezoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861336/ https://www.ncbi.nlm.nih.gov/pubmed/33733195 http://dx.doi.org/10.3389/frai.2020.509354 |
Ejemplares similares
-
A Bayesian Account of Generalist and Specialist Formation Under the Active Inference Framework
por: Chen, Anthony G., et al.
Publicado: (2020) -
Scene Construction, Visual Foraging, and Active Inference
por: Mirza, M. Berk, et al.
Publicado: (2016) -
Editorial: Probabilistic Perspectives on Brain (Dys)function
por: Parr, Thomas, et al.
Publicado: (2021) -
Semantic visual simultaneous localization and mapping (SLAM) using deep learning for dynamic scenes
por: Zhang, Xiao Ya, et al.
Publicado: (2023) -
EnsemV3X: a novel ensembled deep learning architecture for multi-label scene classification
por: Sobti, Priyal, et al.
Publicado: (2021)