Cargando…
Fluence Map Prediction Using Deep Learning Models – Direct Plan Generation for Pancreas Stereotactic Body Radiation Therapy
Purpose: Treatment planning for pancreas stereotactic body radiation therapy (SBRT) is a difficult and time-consuming task. In this study, we aim to develop a novel deep learning framework to generate clinical-quality plans by direct prediction of fluence maps from patient anatomy using convolutiona...
Autores principales: | Wang, Wentao, Sheng, Yang, Wang, Chunhao, Zhang, Jiahan, Li, Xinyi, Palta, Manisha, Czito, Brian, Willett, Christopher G., Wu, Qiuwen, Ge, Yaorong, Yin, Fang-Fang, Wu, Q. Jackie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861344/ https://www.ncbi.nlm.nih.gov/pubmed/33733185 http://dx.doi.org/10.3389/frai.2020.00068 |
Ejemplares similares
-
Deep Learning–Based Fluence Map Prediction for Pancreas Stereotactic Body Radiation Therapy With Simultaneous Integrated Boost
por: Wang, Wentao, et al.
Publicado: (2021) -
Knowledge Models as Teaching Aid for Training Intensity Modulated Radiation Therapy Planning: A Lung Cancer Case Study
por: Mistro, Matt, et al.
Publicado: (2020) -
A Collimator Setting Optimization Algorithm for Dual-Arc Volumetric Modulated Arc Therapy in Pancreas Stereotactic Body Radiation Therapy
por: Li, Xinyi, et al.
Publicado: (2019) -
Knowledge-Based Statistical Inference Method for Plan Quality Quantification
por: Zhang, Jiang, et al.
Publicado: (2019) -
Incorporating Case-Based Reasoning for Radiation Therapy Knowledge Modeling:
A Pelvic Case Study
por: Sheng, Yang, et al.
Publicado: (2019)