Cargando…
Creating artificial human genomes using generative neural networks
Generative models have shown breakthroughs in a wide spectrum of domains due to recent advancements in machine learning algorithms and increased computational power. Despite these impressive achievements, the ability of generative models to create realistic synthetic data is still under-exploited in...
Autores principales: | Yelmen, Burak, Decelle, Aurélien, Ongaro, Linda, Marnetto, Davide, Tallec, Corentin, Montinaro, Francesco, Furtlehner, Cyril, Pagani, Luca, Jay, Flora |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861435/ https://www.ncbi.nlm.nih.gov/pubmed/33539374 http://dx.doi.org/10.1371/journal.pgen.1009303 |
Ejemplares similares
-
Deep convolutional and conditional neural networks for large-scale genomic data generation
por: Yelmen, Burak, et al.
Publicado: (2023) -
A Chromosome-Painting-Based Pipeline to Infer Local Ancestry under Limited Source Availability
por: Molinaro, Ludovica, et al.
Publicado: (2021) -
West Asian sources of the Eurasian component in Ethiopians: a reassessment
por: Molinaro, Ludovica, et al.
Publicado: (2019) -
Ancestry-Specific Analyses Reveal Differential Demographic Histories and Opposite Selective Pressures in Modern South Asian Populations
por: Yelmen, Burak, et al.
Publicado: (2019) -
Improving Selection Detection with Population Branch Statistic on Admixed Populations
por: Yelmen, Burak, et al.
Publicado: (2021)