Cargando…

Reliability and reproducibility of cardiac MRI quantification of peak exercise function with long-axis views

The conventional approach to cardiac magnetic resonance (CMR) involving breath holds, electrocardiography-gating, and acquisition of a short-axis (SAX) image stack, introduces technical and logistical challenges for assessing exercise left ventricular (LV) function. Real-time, free-breathing CMR acq...

Descripción completa

Detalles Bibliográficos
Autores principales: Kirkham, Amy A., Goonasekera, Michelle V., Mattiello, Brenna C., Grenier, Justin G., Haykowsky, Mark J., Thompson, Richard B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861545/
https://www.ncbi.nlm.nih.gov/pubmed/33539447
http://dx.doi.org/10.1371/journal.pone.0245912
Descripción
Sumario:The conventional approach to cardiac magnetic resonance (CMR) involving breath holds, electrocardiography-gating, and acquisition of a short-axis (SAX) image stack, introduces technical and logistical challenges for assessing exercise left ventricular (LV) function. Real-time, free-breathing CMR acquisition of long-axis (LAX) images overcomes these issues and also enables assessment of global longitudinal strain (GLS). We evaluated the reliability of a free-breathing LAX approach compared to the standard SAX approach and the reproducibility of free-breathing LAX. LV SAX (contiguous stack) and LAX (two-chamber and four-chamber) 3T CMR cine images were acquired four times within one scan in 32 women with cardiovascular risk factors (56±10 years, 28±4 kg/m(2)) as follows: 1) resting, gated-segmented, end-expiration breath-hold; 2) resting, real-time, free-breathing; 3) test-retest set of resting, real-time, free-breathing; 4) peak exercise (incremental-to-maximum, in-magnet, stepper test), real-time, free-breathing. A second scan was performed within one week in a subset (n = 5) to determine reproducibility of peak exercise measures. Reliability and agreement of the free-breathing LAX approach with the conventional SAX approach were assessed by intraclass correlation coefficient (ICC) and Bland-Altman plots, respectively. Normal control GLS reserve was also acquired in a separate set of 12 young, healthy control women (25±4 years, 22±2 kg/m(2)) for comparison. Comparisons of LV volumes and function among all techniques at rest had good-to-excellent reliability (ICC = 0.80–0.96), and excellent reliability between peak exercise free-breathing LAX and SAX evaluations (ICC = 0.92–0.96). Higher resting heart rates with free-breathing acquisitions compared to breath-hold (mean difference, limits of agreement: 5, 1–12 beats per minute) reduced reliability for cardiac output (ICC = 0.67–0.79). Reproducibility of the free-breathing LAX approach was good-to-excellent at rest and peak exercise (ICC = 0.74–0.99). GLS exercise reserve was impaired in older women at cardiovascular risk compared to young healthy women (-4.7±2.3% vs -7.4±2.1%, p = 0.001). Real-time, free-breathing CMR with LAX evaluation provides a reliable and reproducible method to assess rest and peak exercise cardiac function, including GLS.