Cargando…
Risk Stratification for Early Detection of Diabetes and Hypertension in Resource-Limited Settings: Machine Learning Analysis
BACKGROUND: The impending scale up of noncommunicable disease screening programs in low- and middle-income countries coupled with limited health resources require that such programs be as accurate as possible at identifying patients at high risk. OBJECTIVE: The aim of this study was to develop machi...
Autores principales: | Boutilier, Justin J, Chan, Timothy C Y, Ranjan, Manish, Deo, Sarang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7862003/ https://www.ncbi.nlm.nih.gov/pubmed/33475518 http://dx.doi.org/10.2196/20123 |
Ejemplares similares
-
Validity of Machine Learning in Detecting Complicated Appendicitis in a Resource-Limited Setting: Findings from Vietnam
por: Phan-Mai, Tuong-Anh, et al.
Publicado: (2023) -
Early COVID-19 respiratory risk stratification using machine learning
por: Douglas, Molly J, et al.
Publicado: (2022) -
Tools for Detection of Schistosomiasis in Resource Limited Settings
por: Ajibola, Olumide, et al.
Publicado: (2018) -
Approaches to the Management of Hypertension in Resource-Limited Settings: Strategies to Overcome the Hypertension Crisis in the Post-COVID Era
por: Skeete, Jamario, et al.
Publicado: (2020) -
Oesophageal Perforation: A diagnostic and therapeutic challenge in a resource limited setting. A report of three cases
por: Balumuka, Deo D, et al.
Publicado: (2011)