Cargando…

An Ultrasound Model to Predict the Short-Term Effects of Endovascular Stent Placement in the Treatment of Carotid Artery Stenosis

Purpose: The present study aimed to explore the predictive ability of an ultrasound linear regression equation in patients undergoing endovascular stent placement (ESP) to treat carotid artery stenosis-induced ischemic stroke. Methods: Pearson's correlation coefficient of actual improvement rat...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Sheng-Jiang, Liu, Rui-Rui, Shang, Yi-Ran, Xie, Yu-Juan, Guo, Xiao-Han, Huang, Meng-Jiao, Yang, Xiao-Feng, Fu, Qi-Zhi, Qi, Ji-Sheng, Shen, Dong-Yan, Li, Jia-Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7862114/
https://www.ncbi.nlm.nih.gov/pubmed/33553258
http://dx.doi.org/10.3389/fcvm.2020.607367
_version_ 1783647217696899072
author Chen, Sheng-Jiang
Liu, Rui-Rui
Shang, Yi-Ran
Xie, Yu-Juan
Guo, Xiao-Han
Huang, Meng-Jiao
Yang, Xiao-Feng
Fu, Qi-Zhi
Qi, Ji-Sheng
Shen, Dong-Yan
Li, Jia-Yan
author_facet Chen, Sheng-Jiang
Liu, Rui-Rui
Shang, Yi-Ran
Xie, Yu-Juan
Guo, Xiao-Han
Huang, Meng-Jiao
Yang, Xiao-Feng
Fu, Qi-Zhi
Qi, Ji-Sheng
Shen, Dong-Yan
Li, Jia-Yan
author_sort Chen, Sheng-Jiang
collection PubMed
description Purpose: The present study aimed to explore the predictive ability of an ultrasound linear regression equation in patients undergoing endovascular stent placement (ESP) to treat carotid artery stenosis-induced ischemic stroke. Methods: Pearson's correlation coefficient of actual improvement rate (IR) and 10 preoperative ultrasound indices in the carotid arteries of 64 patients who underwent ESP were retrospectively analyzed. A predictive ultrasound model for the fitted IR after ESP was established. Results: Of the 10 preoperative ultrasound indices, peak systolic velocity (PSV) at stenosis was strongly correlated with postoperative actual IR (r = 0.622; P < 0.01). The unstable plaque index (UPI; r = 0.447), peak eccentricity ratio (r = 0.431), and plaque stiffness index (β; r = 0.512) moderately correlated with actual IR (P < 0.01). Furthermore, the resistance index (r = 0.325) and the dilation coefficient (r = 0.311) weakly correlated with actual IR (P < 0.05). There was no significant correlation between actual IR and the number of unstable plaques, area narrowing, pulsatility index, and compliance coefficient. In combination, morphological, hemodynamic, and physiological ultrasound indices can predict 62.39% of neurological deficits after ESP: fitted IR = 0.9816 – 0.1293β + 0.0504UPI – 0.1137PSV. Conclusion: Certain carotid ultrasound indices correlate with ESP outcomes. The multi-index predictive model can be used to evaluate the effects of ESP before surgery.
format Online
Article
Text
id pubmed-7862114
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-78621142021-02-06 An Ultrasound Model to Predict the Short-Term Effects of Endovascular Stent Placement in the Treatment of Carotid Artery Stenosis Chen, Sheng-Jiang Liu, Rui-Rui Shang, Yi-Ran Xie, Yu-Juan Guo, Xiao-Han Huang, Meng-Jiao Yang, Xiao-Feng Fu, Qi-Zhi Qi, Ji-Sheng Shen, Dong-Yan Li, Jia-Yan Front Cardiovasc Med Cardiovascular Medicine Purpose: The present study aimed to explore the predictive ability of an ultrasound linear regression equation in patients undergoing endovascular stent placement (ESP) to treat carotid artery stenosis-induced ischemic stroke. Methods: Pearson's correlation coefficient of actual improvement rate (IR) and 10 preoperative ultrasound indices in the carotid arteries of 64 patients who underwent ESP were retrospectively analyzed. A predictive ultrasound model for the fitted IR after ESP was established. Results: Of the 10 preoperative ultrasound indices, peak systolic velocity (PSV) at stenosis was strongly correlated with postoperative actual IR (r = 0.622; P < 0.01). The unstable plaque index (UPI; r = 0.447), peak eccentricity ratio (r = 0.431), and plaque stiffness index (β; r = 0.512) moderately correlated with actual IR (P < 0.01). Furthermore, the resistance index (r = 0.325) and the dilation coefficient (r = 0.311) weakly correlated with actual IR (P < 0.05). There was no significant correlation between actual IR and the number of unstable plaques, area narrowing, pulsatility index, and compliance coefficient. In combination, morphological, hemodynamic, and physiological ultrasound indices can predict 62.39% of neurological deficits after ESP: fitted IR = 0.9816 – 0.1293β + 0.0504UPI – 0.1137PSV. Conclusion: Certain carotid ultrasound indices correlate with ESP outcomes. The multi-index predictive model can be used to evaluate the effects of ESP before surgery. Frontiers Media S.A. 2021-01-22 /pmc/articles/PMC7862114/ /pubmed/33553258 http://dx.doi.org/10.3389/fcvm.2020.607367 Text en Copyright © 2021 Chen, Liu, Shang, Xie, Guo, Huang, Yang, Fu, Qi, Shen and Li. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Cardiovascular Medicine
Chen, Sheng-Jiang
Liu, Rui-Rui
Shang, Yi-Ran
Xie, Yu-Juan
Guo, Xiao-Han
Huang, Meng-Jiao
Yang, Xiao-Feng
Fu, Qi-Zhi
Qi, Ji-Sheng
Shen, Dong-Yan
Li, Jia-Yan
An Ultrasound Model to Predict the Short-Term Effects of Endovascular Stent Placement in the Treatment of Carotid Artery Stenosis
title An Ultrasound Model to Predict the Short-Term Effects of Endovascular Stent Placement in the Treatment of Carotid Artery Stenosis
title_full An Ultrasound Model to Predict the Short-Term Effects of Endovascular Stent Placement in the Treatment of Carotid Artery Stenosis
title_fullStr An Ultrasound Model to Predict the Short-Term Effects of Endovascular Stent Placement in the Treatment of Carotid Artery Stenosis
title_full_unstemmed An Ultrasound Model to Predict the Short-Term Effects of Endovascular Stent Placement in the Treatment of Carotid Artery Stenosis
title_short An Ultrasound Model to Predict the Short-Term Effects of Endovascular Stent Placement in the Treatment of Carotid Artery Stenosis
title_sort ultrasound model to predict the short-term effects of endovascular stent placement in the treatment of carotid artery stenosis
topic Cardiovascular Medicine
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7862114/
https://www.ncbi.nlm.nih.gov/pubmed/33553258
http://dx.doi.org/10.3389/fcvm.2020.607367
work_keys_str_mv AT chenshengjiang anultrasoundmodeltopredicttheshorttermeffectsofendovascularstentplacementinthetreatmentofcarotidarterystenosis
AT liuruirui anultrasoundmodeltopredicttheshorttermeffectsofendovascularstentplacementinthetreatmentofcarotidarterystenosis
AT shangyiran anultrasoundmodeltopredicttheshorttermeffectsofendovascularstentplacementinthetreatmentofcarotidarterystenosis
AT xieyujuan anultrasoundmodeltopredicttheshorttermeffectsofendovascularstentplacementinthetreatmentofcarotidarterystenosis
AT guoxiaohan anultrasoundmodeltopredicttheshorttermeffectsofendovascularstentplacementinthetreatmentofcarotidarterystenosis
AT huangmengjiao anultrasoundmodeltopredicttheshorttermeffectsofendovascularstentplacementinthetreatmentofcarotidarterystenosis
AT yangxiaofeng anultrasoundmodeltopredicttheshorttermeffectsofendovascularstentplacementinthetreatmentofcarotidarterystenosis
AT fuqizhi anultrasoundmodeltopredicttheshorttermeffectsofendovascularstentplacementinthetreatmentofcarotidarterystenosis
AT qijisheng anultrasoundmodeltopredicttheshorttermeffectsofendovascularstentplacementinthetreatmentofcarotidarterystenosis
AT shendongyan anultrasoundmodeltopredicttheshorttermeffectsofendovascularstentplacementinthetreatmentofcarotidarterystenosis
AT lijiayan anultrasoundmodeltopredicttheshorttermeffectsofendovascularstentplacementinthetreatmentofcarotidarterystenosis
AT chenshengjiang ultrasoundmodeltopredicttheshorttermeffectsofendovascularstentplacementinthetreatmentofcarotidarterystenosis
AT liuruirui ultrasoundmodeltopredicttheshorttermeffectsofendovascularstentplacementinthetreatmentofcarotidarterystenosis
AT shangyiran ultrasoundmodeltopredicttheshorttermeffectsofendovascularstentplacementinthetreatmentofcarotidarterystenosis
AT xieyujuan ultrasoundmodeltopredicttheshorttermeffectsofendovascularstentplacementinthetreatmentofcarotidarterystenosis
AT guoxiaohan ultrasoundmodeltopredicttheshorttermeffectsofendovascularstentplacementinthetreatmentofcarotidarterystenosis
AT huangmengjiao ultrasoundmodeltopredicttheshorttermeffectsofendovascularstentplacementinthetreatmentofcarotidarterystenosis
AT yangxiaofeng ultrasoundmodeltopredicttheshorttermeffectsofendovascularstentplacementinthetreatmentofcarotidarterystenosis
AT fuqizhi ultrasoundmodeltopredicttheshorttermeffectsofendovascularstentplacementinthetreatmentofcarotidarterystenosis
AT qijisheng ultrasoundmodeltopredicttheshorttermeffectsofendovascularstentplacementinthetreatmentofcarotidarterystenosis
AT shendongyan ultrasoundmodeltopredicttheshorttermeffectsofendovascularstentplacementinthetreatmentofcarotidarterystenosis
AT lijiayan ultrasoundmodeltopredicttheshorttermeffectsofendovascularstentplacementinthetreatmentofcarotidarterystenosis