Cargando…
Age differences in anticipatory and executory mechanisms of gait initiation following unexpected balance perturbations
PURPOSE: An age-related decline in anticipatory postural mechanisms has been reported during gait initiation; however, it is unclear whether such decline may jeopardize whole-body stability following unexpected balance perturbations. This study aimed to compare young and older individuals’ ability t...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7862204/ https://www.ncbi.nlm.nih.gov/pubmed/33106932 http://dx.doi.org/10.1007/s00421-020-04531-1 |
_version_ | 1783647238156713984 |
---|---|
author | Laudani, Luca Rum, Lorenzo Valle, Maria Stella Macaluso, Andrea Vannozzi, Giuseppe Casabona, Antonino |
author_facet | Laudani, Luca Rum, Lorenzo Valle, Maria Stella Macaluso, Andrea Vannozzi, Giuseppe Casabona, Antonino |
author_sort | Laudani, Luca |
collection | PubMed |
description | PURPOSE: An age-related decline in anticipatory postural mechanisms has been reported during gait initiation; however, it is unclear whether such decline may jeopardize whole-body stability following unexpected balance perturbations. This study aimed to compare young and older individuals’ ability to generate postural responses and preserve stability in response to external waist perturbations delivered within gait initiation. METHODS: Ten young and ten older participants performed 10 gait initiation trials followed by 48 unperturbed and 12 perturbed trials in a random order. A stereophotogrammetric system and three force platforms were used to quantify mechanical parameters from the preparatory phase (e.g., timing and amplitude of postural adjustments) and from the stepping phase (e.g., step characteristics and dynamic stability). Activation patterns of lower leg muscles were determined by surface electromyography. RESULTS: Older participants responded to perturbation with lower increase in both magnitude (p < 0.001; η(2)(p) = 0.62) and duration (p = 0.001; η(2)(p) = 0.39) of preparatory parameters and soleus muscle activity (p < 0.001; η(2)(p) = 0.55), causing shorter (p < 0.001; η(2)(p) = 0.59) and lower (p < 0.001; η(2)(p) = 0.43) stepping, compared to young participants. Interestingly, young participants showed greater correlations between preparatory phase parameters and dynamic stability of the first step than older participants (average r of − 0.40 and − 0.06, respectively). CONCLUSION: The results suggest that young participants took more time than older to adjust the anticipatory biomechanical response to perturbation attempting to preserve balance during stepping. In contrast, older adults were unable to modify their anticipatory adjustments in response to perturbation and mainly relied on compensatory mechanisms attempting to preserve stability via a more cautious stepping strategy. |
format | Online Article Text |
id | pubmed-7862204 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-78622042021-02-11 Age differences in anticipatory and executory mechanisms of gait initiation following unexpected balance perturbations Laudani, Luca Rum, Lorenzo Valle, Maria Stella Macaluso, Andrea Vannozzi, Giuseppe Casabona, Antonino Eur J Appl Physiol Original Article PURPOSE: An age-related decline in anticipatory postural mechanisms has been reported during gait initiation; however, it is unclear whether such decline may jeopardize whole-body stability following unexpected balance perturbations. This study aimed to compare young and older individuals’ ability to generate postural responses and preserve stability in response to external waist perturbations delivered within gait initiation. METHODS: Ten young and ten older participants performed 10 gait initiation trials followed by 48 unperturbed and 12 perturbed trials in a random order. A stereophotogrammetric system and three force platforms were used to quantify mechanical parameters from the preparatory phase (e.g., timing and amplitude of postural adjustments) and from the stepping phase (e.g., step characteristics and dynamic stability). Activation patterns of lower leg muscles were determined by surface electromyography. RESULTS: Older participants responded to perturbation with lower increase in both magnitude (p < 0.001; η(2)(p) = 0.62) and duration (p = 0.001; η(2)(p) = 0.39) of preparatory parameters and soleus muscle activity (p < 0.001; η(2)(p) = 0.55), causing shorter (p < 0.001; η(2)(p) = 0.59) and lower (p < 0.001; η(2)(p) = 0.43) stepping, compared to young participants. Interestingly, young participants showed greater correlations between preparatory phase parameters and dynamic stability of the first step than older participants (average r of − 0.40 and − 0.06, respectively). CONCLUSION: The results suggest that young participants took more time than older to adjust the anticipatory biomechanical response to perturbation attempting to preserve balance during stepping. In contrast, older adults were unable to modify their anticipatory adjustments in response to perturbation and mainly relied on compensatory mechanisms attempting to preserve stability via a more cautious stepping strategy. Springer Berlin Heidelberg 2020-10-26 2021 /pmc/articles/PMC7862204/ /pubmed/33106932 http://dx.doi.org/10.1007/s00421-020-04531-1 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Original Article Laudani, Luca Rum, Lorenzo Valle, Maria Stella Macaluso, Andrea Vannozzi, Giuseppe Casabona, Antonino Age differences in anticipatory and executory mechanisms of gait initiation following unexpected balance perturbations |
title | Age differences in anticipatory and executory mechanisms of gait initiation following unexpected balance perturbations |
title_full | Age differences in anticipatory and executory mechanisms of gait initiation following unexpected balance perturbations |
title_fullStr | Age differences in anticipatory and executory mechanisms of gait initiation following unexpected balance perturbations |
title_full_unstemmed | Age differences in anticipatory and executory mechanisms of gait initiation following unexpected balance perturbations |
title_short | Age differences in anticipatory and executory mechanisms of gait initiation following unexpected balance perturbations |
title_sort | age differences in anticipatory and executory mechanisms of gait initiation following unexpected balance perturbations |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7862204/ https://www.ncbi.nlm.nih.gov/pubmed/33106932 http://dx.doi.org/10.1007/s00421-020-04531-1 |
work_keys_str_mv | AT laudaniluca agedifferencesinanticipatoryandexecutorymechanismsofgaitinitiationfollowingunexpectedbalanceperturbations AT rumlorenzo agedifferencesinanticipatoryandexecutorymechanismsofgaitinitiationfollowingunexpectedbalanceperturbations AT vallemariastella agedifferencesinanticipatoryandexecutorymechanismsofgaitinitiationfollowingunexpectedbalanceperturbations AT macalusoandrea agedifferencesinanticipatoryandexecutorymechanismsofgaitinitiationfollowingunexpectedbalanceperturbations AT vannozzigiuseppe agedifferencesinanticipatoryandexecutorymechanismsofgaitinitiationfollowingunexpectedbalanceperturbations AT casabonaantonino agedifferencesinanticipatoryandexecutorymechanismsofgaitinitiationfollowingunexpectedbalanceperturbations |