Cargando…
Addressing limited weight resolution in a fully optical neuromorphic reservoir computing readout
Using optical hardware for neuromorphic computing has become more and more popular recently, due to its efficient high-speed data processing capabilities and low power consumption. However, there are still some remaining obstacles to realizing the vision of a completely optical neuromorphic computer...
Autores principales: | Ma, Chonghuai, Laporte, Floris, Dambre, Joni, Bienstman, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7862222/ https://www.ncbi.nlm.nih.gov/pubmed/33542496 http://dx.doi.org/10.1038/s41598-021-82720-4 |
Ejemplares similares
-
Comparing different nonlinearities in readout systems for optical neuromorphic computing networks
por: Ma, Chonghuai, et al.
Publicado: (2021) -
Simulating self-learning in photorefractive optical reservoir computers
por: Laporte, Floris, et al.
Publicado: (2021) -
Experimental results on nonlinear distortion compensation using photonic reservoir computing with a single set of weights for different wavelengths
por: Gooskens, Emmanuel, et al.
Publicado: (2023) -
Highly parallel simulation and optimization of photonic circuits in time and frequency domain based on the deep-learning framework PyTorch
por: Laporte, Floris, et al.
Publicado: (2019) -
A training algorithm for networks of high-variability reservoirs
por: Freiberger, Matthias, et al.
Publicado: (2020)