Cargando…

Ensemble bias correction of climate simulations: preserving internal variability

Climate simulations often need to be adjusted (i.e., corrected) before any climate change impacts studies. However usual bias correction approaches do not differentiate the bias from the different uncertainties of the climate simulations: scenario uncertainty, model uncertainty and internal variabil...

Descripción completa

Detalles Bibliográficos
Autores principales: Vaittinada Ayar, Pradeebane, Vrac, Mathieu, Mailhot, Alain
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7862270/
https://www.ncbi.nlm.nih.gov/pubmed/33542411
http://dx.doi.org/10.1038/s41598-021-82715-1
Descripción
Sumario:Climate simulations often need to be adjusted (i.e., corrected) before any climate change impacts studies. However usual bias correction approaches do not differentiate the bias from the different uncertainties of the climate simulations: scenario uncertainty, model uncertainty and internal variability. In particular, in the case of a multi-run ensemble of simulations (i.e., multiple runs of one model), correcting, as usual, each member separately, would mix up the model biases with its internal variability. In this study, two ensemble bias correction approaches preserving the internal variability of the initial ensemble are proposed. These “Ensemble bias correction” (EnsBC) approaches are assessed and compared to the approach where each ensemble member is corrected separately, using precipitation and temperature series at two locations in North America from a multi-member regional climate ensemble. The preservation of the internal variability is assessed in terms of monthly mean and hourly quantiles. Besides, the preservation of the internal variability in a changing climate is evaluated. Results show that, contrary to the usual approach, the proposed ensemble bias correction approaches adequately preserve the internal variability even in changing climate. Moreover, the climate change signal given by the original ensemble is also conserved by both approaches.