Cargando…
Credal decision tree based novel ensemble models for spatial assessment of gully erosion and sustainable management
We introduce novel hybrid ensemble models in gully erosion susceptibility mapping (GESM) through a case study in the Bastam sedimentary plain of Northern Iran. Four new ensemble models including credal decision tree-bagging (CDT-BA), credal decision tree-dagging (CDT-DA), credal decision tree-rotati...
Autores principales: | Arabameri, Alireza, Sadhasivam, Nitheshnirmal, Turabieh, Hamza, Mafarja, Majdi, Rezaie, Fatemeh, Pal, Subodh Chandra, Santosh, M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7862281/ https://www.ncbi.nlm.nih.gov/pubmed/33542340 http://dx.doi.org/10.1038/s41598-021-82527-3 |
Ejemplares similares
-
Machine Learning-Based Gully Erosion Susceptibility Mapping: A Case Study of Eastern India
por: Saha, Sunil, et al.
Publicado: (2020) -
Novel Ensemble Approach of Deep Learning Neural Network (DLNN) Model and Particle Swarm Optimization (PSO) Algorithm for Prediction of Gully Erosion Susceptibility
por: Band, Shahab S., et al.
Publicado: (2020) -
Evaluation of Recent Advanced Soft Computing Techniques for Gully Erosion Susceptibility Mapping: A Comparative Study
por: Arabameri, Alireza, et al.
Publicado: (2020) -
Classification framework for faulty-software using enhanced exploratory whale optimizer-based feature selection scheme and random forest ensemble learning
por: Mafarja, Majdi, et al.
Publicado: (2023) -
Binary Credal Classification Under Sparsity Constraints
por: Basu, Tathagata, et al.
Publicado: (2020)