Cargando…
Ratio of the interferon-γ signature to the immunosuppression signature predicts anti-PD-1 therapy response in melanoma
Immune checkpoint inhibitor (ICI) treatments produce clinical benefit in many patients. However, better pretreatment predictive biomarkers for ICI are still needed to help match individual patients to the treatment most likely to be of benefit. Existing gene expression profiling (GEP)-based biomarke...
Autores principales: | Cui, Chuanliang, Xu, Canqiang, Yang, Wenxian, Chi, Zhihong, Sheng, Xinan, Si, Lu, Xie, Yihong, Yu, Jinyu, Wang, Shun, Yu, Rongshan, Guo, Jun, Kong, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7862369/ https://www.ncbi.nlm.nih.gov/pubmed/33542239 http://dx.doi.org/10.1038/s41525-021-00169-w |
Ejemplares similares
-
A machine learning framework to determine geolocations from metagenomic profiling
por: Huang, Lihong, et al.
Publicado: (2020) -
Inconsistent prediction capability of ImmuneCells.Sig across different RNA-seq datasets
por: Xiao, Xu, et al.
Publicado: (2021) -
Using deep learning to predict anti-PD-1 response in melanoma and lung cancer patients from histopathology images
por: Hu, Jing, et al.
Publicado: (2020) -
TERT copy gain predicts the outcome of high-dose interferon α-2b therapy in acral melanoma
por: Yu, Sifan, et al.
Publicado: (2018) -
Increased AURKA Gene Copy Number Correlates with Poor Prognosis and Predicts the Efficacy of High-dose Interferon Therapy in Acral Melanoma
por: Yan, Junya, et al.
Publicado: (2018)