Cargando…
Predicting COVID-19 mortality with electronic medical records
This study aims to predict death after COVID-19 using only the past medical information routinely collected in electronic health records (EHRs) and to understand the differences in risk factors across age groups. Combining computational methods and clinical expertise, we curated clusters that repres...
Autores principales: | Estiri, Hossein, Strasser, Zachary H., Klann, Jeffy G., Naseri, Pourandokht, Wagholikar, Kavishwar B., Murphy, Shawn N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7862405/ https://www.ncbi.nlm.nih.gov/pubmed/33542473 http://dx.doi.org/10.1038/s41746-021-00383-x |
Ejemplares similares
-
An objective framework for evaluating unrecognized bias in medical AI models predicting COVID-19 outcomes
por: Estiri, Hossein, et al.
Publicado: (2022) -
Transitive Sequencing Medical Records for Mining Predictive and Interpretable Temporal Representations
por: Estiri, Hossein, et al.
Publicado: (2020) -
A retrospective cohort analysis leveraging augmented intelligence to characterize long COVID in the electronic health record: A precision medicine framework
por: Strasser, Zachary H., et al.
Publicado: (2023) -
Polar labeling: silver standard algorithm for training disease classifiers
por: Wagholikar, Kavishwar B, et al.
Publicado: (2020) -
A clustering approach for detecting implausible observation values in electronic health records data
por: Estiri, Hossein, et al.
Publicado: (2019)