Cargando…
Management alternatives for Carmenta theobromae (Busck, 1910) (Lepidoptera: Sesiidae) and Simplicivalva ampliophilobia (Lepidoptera: Cossidae), limiting pests of guava in Colombia
The larval stages of Carmenta theobromae Busck (1910) and Simplicivalva ampliophilobia Davis, Gentili-Poole and Mitter (2008) attack the subcortical zone and pith in guava trees, respectively, in the first productive nucleus of fruit trees in Colombia: Hoya del Río Suárez (HRS). The presence of pest...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7862407/ https://www.ncbi.nlm.nih.gov/pubmed/33542249 http://dx.doi.org/10.1038/s41598-021-81830-3 |
_version_ | 1783647284190248960 |
---|---|
author | Pulido-Blanco, Víctor Camilo Pinzón-Sandoval, Elberth Hernando González-Chavarro, Carlos Felipe Serrano-Cely, Pablo Antonio |
author_facet | Pulido-Blanco, Víctor Camilo Pinzón-Sandoval, Elberth Hernando González-Chavarro, Carlos Felipe Serrano-Cely, Pablo Antonio |
author_sort | Pulido-Blanco, Víctor Camilo |
collection | PubMed |
description | The larval stages of Carmenta theobromae Busck (1910) and Simplicivalva ampliophilobia Davis, Gentili-Poole and Mitter (2008) attack the subcortical zone and pith in guava trees, respectively, in the first productive nucleus of fruit trees in Colombia: Hoya del Río Suárez (HRS). The presence of pest insects has been reported in 98% of the farms sampled in HRS (n = 124), with up to 96 and 11 simultaneous larvae per tree, respectively. Although the aspects of the basic biology and life cycle of both pests have been resolved, there are no strategies for managing populations in the field. Therefore, the aim of this study was to evaluate different management alternatives under laboratory and field conditions in HRS. In laboratory conditions, a completely randomized design was used in two separate experiments, each with six treatments: T1: Spinosad (a mixture of Spinosad A and D); T2: S-1,2-di(ethoxycarbonyl) ethyl 0,0-dimethylphosphorodithioate (chemical control); T3: Lecanicillium lecanii; T4: Beauveria bassiana; T5: Mix of B. bassiana and B. brongniartii, and T6: distilled water (control). The number of dead larvae per replicate per treatment was evaluated (DL), with experimental units of five and three larvae, respectively. In the field, to the two best alternatives found for each pest in the laboratory, pruning and keeping the area around the plants free of weeds were added as cultural management, in two separate additional experiments, each with three larvae as experimental unit per treatment. For C. theobromae, the best laboratory alternatives were chemical control (DL: 3.78) and L. lecanii (DL: 2.33), followed without statistical differences by B. bassiana (DL: 1.67). In the field, the virulence of B. bassiana improved (DL: 3), and together with pruning and keeping the area around the plants clear of weeds (DL: 3), they stood out as the best alternatives. For S. ampliophilobia under laboratory conditions, the best alternatives were Spinosad (2.74) and chemical control (DL: 2.66), without significant difference. In the field, there were no statistical differences between the alternatives, except for the control. This statistical parity of cultural practices, and biological and chemical management is an argument in favor of the use of the former to the detriment of the third, especially when the harmful effects of the molecule S-1,2 di (ethoxycarbonyl) ethyl 0, 0-dimethyl phosphorodithioate have been proven in air, water and agricultural soils, in addition to its association with thyroid cancer in humans. This is a strong argument to favor the use of synergies of cultural and biological management methods framed in IPM, as opposed to the use of chemical agents whose harmful effects are strongly documented, and whose use is becoming increasingly prohibited. |
format | Online Article Text |
id | pubmed-7862407 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-78624072021-02-05 Management alternatives for Carmenta theobromae (Busck, 1910) (Lepidoptera: Sesiidae) and Simplicivalva ampliophilobia (Lepidoptera: Cossidae), limiting pests of guava in Colombia Pulido-Blanco, Víctor Camilo Pinzón-Sandoval, Elberth Hernando González-Chavarro, Carlos Felipe Serrano-Cely, Pablo Antonio Sci Rep Article The larval stages of Carmenta theobromae Busck (1910) and Simplicivalva ampliophilobia Davis, Gentili-Poole and Mitter (2008) attack the subcortical zone and pith in guava trees, respectively, in the first productive nucleus of fruit trees in Colombia: Hoya del Río Suárez (HRS). The presence of pest insects has been reported in 98% of the farms sampled in HRS (n = 124), with up to 96 and 11 simultaneous larvae per tree, respectively. Although the aspects of the basic biology and life cycle of both pests have been resolved, there are no strategies for managing populations in the field. Therefore, the aim of this study was to evaluate different management alternatives under laboratory and field conditions in HRS. In laboratory conditions, a completely randomized design was used in two separate experiments, each with six treatments: T1: Spinosad (a mixture of Spinosad A and D); T2: S-1,2-di(ethoxycarbonyl) ethyl 0,0-dimethylphosphorodithioate (chemical control); T3: Lecanicillium lecanii; T4: Beauveria bassiana; T5: Mix of B. bassiana and B. brongniartii, and T6: distilled water (control). The number of dead larvae per replicate per treatment was evaluated (DL), with experimental units of five and three larvae, respectively. In the field, to the two best alternatives found for each pest in the laboratory, pruning and keeping the area around the plants free of weeds were added as cultural management, in two separate additional experiments, each with three larvae as experimental unit per treatment. For C. theobromae, the best laboratory alternatives were chemical control (DL: 3.78) and L. lecanii (DL: 2.33), followed without statistical differences by B. bassiana (DL: 1.67). In the field, the virulence of B. bassiana improved (DL: 3), and together with pruning and keeping the area around the plants clear of weeds (DL: 3), they stood out as the best alternatives. For S. ampliophilobia under laboratory conditions, the best alternatives were Spinosad (2.74) and chemical control (DL: 2.66), without significant difference. In the field, there were no statistical differences between the alternatives, except for the control. This statistical parity of cultural practices, and biological and chemical management is an argument in favor of the use of the former to the detriment of the third, especially when the harmful effects of the molecule S-1,2 di (ethoxycarbonyl) ethyl 0, 0-dimethyl phosphorodithioate have been proven in air, water and agricultural soils, in addition to its association with thyroid cancer in humans. This is a strong argument to favor the use of synergies of cultural and biological management methods framed in IPM, as opposed to the use of chemical agents whose harmful effects are strongly documented, and whose use is becoming increasingly prohibited. Nature Publishing Group UK 2021-02-04 /pmc/articles/PMC7862407/ /pubmed/33542249 http://dx.doi.org/10.1038/s41598-021-81830-3 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Pulido-Blanco, Víctor Camilo Pinzón-Sandoval, Elberth Hernando González-Chavarro, Carlos Felipe Serrano-Cely, Pablo Antonio Management alternatives for Carmenta theobromae (Busck, 1910) (Lepidoptera: Sesiidae) and Simplicivalva ampliophilobia (Lepidoptera: Cossidae), limiting pests of guava in Colombia |
title | Management alternatives for Carmenta theobromae (Busck, 1910) (Lepidoptera: Sesiidae) and Simplicivalva ampliophilobia (Lepidoptera: Cossidae), limiting pests of guava in Colombia |
title_full | Management alternatives for Carmenta theobromae (Busck, 1910) (Lepidoptera: Sesiidae) and Simplicivalva ampliophilobia (Lepidoptera: Cossidae), limiting pests of guava in Colombia |
title_fullStr | Management alternatives for Carmenta theobromae (Busck, 1910) (Lepidoptera: Sesiidae) and Simplicivalva ampliophilobia (Lepidoptera: Cossidae), limiting pests of guava in Colombia |
title_full_unstemmed | Management alternatives for Carmenta theobromae (Busck, 1910) (Lepidoptera: Sesiidae) and Simplicivalva ampliophilobia (Lepidoptera: Cossidae), limiting pests of guava in Colombia |
title_short | Management alternatives for Carmenta theobromae (Busck, 1910) (Lepidoptera: Sesiidae) and Simplicivalva ampliophilobia (Lepidoptera: Cossidae), limiting pests of guava in Colombia |
title_sort | management alternatives for carmenta theobromae (busck, 1910) (lepidoptera: sesiidae) and simplicivalva ampliophilobia (lepidoptera: cossidae), limiting pests of guava in colombia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7862407/ https://www.ncbi.nlm.nih.gov/pubmed/33542249 http://dx.doi.org/10.1038/s41598-021-81830-3 |
work_keys_str_mv | AT pulidoblancovictorcamilo managementalternativesforcarmentatheobromaebusck1910lepidopterasesiidaeandsimplicivalvaampliophilobialepidopteracossidaelimitingpestsofguavaincolombia AT pinzonsandovalelberthhernando managementalternativesforcarmentatheobromaebusck1910lepidopterasesiidaeandsimplicivalvaampliophilobialepidopteracossidaelimitingpestsofguavaincolombia AT gonzalezchavarrocarlosfelipe managementalternativesforcarmentatheobromaebusck1910lepidopterasesiidaeandsimplicivalvaampliophilobialepidopteracossidaelimitingpestsofguavaincolombia AT serranocelypabloantonio managementalternativesforcarmentatheobromaebusck1910lepidopterasesiidaeandsimplicivalvaampliophilobialepidopteracossidaelimitingpestsofguavaincolombia |