Cargando…
Evaluation of dose-volume histogram prediction for organ-at risk and planning target volume based on machine learning
The purpose of this work is to evaluate the performance of applying patient dosimetric information induced by individual uniform-intensity radiation fields in organ-at risk (OAR) dose-volume histogram (DVH) prediction, and extend to DVH prediction of planning target volume (PTV). Ninety nasopharynge...
Autores principales: | Jiao, Sheng xiu, Wang, Ming li, Chen, Li xin, Liu, Xiao-wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7862493/ https://www.ncbi.nlm.nih.gov/pubmed/33542427 http://dx.doi.org/10.1038/s41598-021-82749-5 |
Ejemplares similares
-
Data-Driven Dose-Volume Histogram Prediction
por: Polizzi, Mitchell, et al.
Publicado: (2021) -
Brachytherapy dose‐volume histogram commissioning with multiple planning systems
por: Gossman, Michael S., et al.
Publicado: (2014) -
Addendum to brachytherapy dose‐volume histogram commissioning with multiple planning systems
por: Gossman, Michael S.
Publicado: (2016) -
Machine learning for dose-volume histogram based clinical decision-making support system in radiation therapy plans for brain tumors
por: Siciarz, Pawel, et al.
Publicado: (2021) -
Machine Learning of Dose-Volume Histogram Parameters Predicting Overall Survival in Patients with Cervical Cancer Treated with Definitive Radiotherapy
por: Xu, Zhiyuan, et al.
Publicado: (2022)