Cargando…
Structural modeling and analysis of the SARS-CoV-2 cell entry inhibitor camostat bound to the trypsin-like protease TMPRSS2
The type II transmembrane serine protease TMPRSS2 facilitates the entry of coronaviruses, such as SARS-CoV-2, into host cells by cleaving the S(1)/S(2) interface of the viral spike protein. Based on structural data derived from X-ray crystallographic data of related trypsin-like proteases, a homolog...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7862521/ https://www.ncbi.nlm.nih.gov/pubmed/33564221 http://dx.doi.org/10.1007/s00044-021-02708-7 |
_version_ | 1783647302574931968 |
---|---|
author | Escalante, Diego E. Ferguson, David M. |
author_facet | Escalante, Diego E. Ferguson, David M. |
author_sort | Escalante, Diego E. |
collection | PubMed |
description | The type II transmembrane serine protease TMPRSS2 facilitates the entry of coronaviruses, such as SARS-CoV-2, into host cells by cleaving the S(1)/S(2) interface of the viral spike protein. Based on structural data derived from X-ray crystallographic data of related trypsin-like proteases, a homology model of TMPRSS2 is described and validated using the broad spectrum COVID-19 drug candidate camostat as a probe. Both active site recognition and catalytic function are examined using quantum mechanics/molecular mechanics molecular dynamic (QM/MM MD) simulations of camostat and its active metabolite, 4-(4-guanidinobenzoyloxy) phenylacetate (GBPA). Substrate binding is shown to be primarily stabilized through salt bridge formation between the shared guanidino pharmacophore and D435 in pocket A (flanking the catalytic S441). Based on the binding mode of GBPA, residues K342 and W461 have been identified as potential contacts involved in TMPRSS2 selective binding and activity. Additional data is reported that indicates the transition state structure is stabilized through H-bonding interactions with the backbone N–H groups within an oxyanion hole following bottom-side attack of the carbonyl by S441. This is supported by prior work on related serine proteases suggesting further strategies to exploit in the design of more potent inhibitors. Taken overall, the proposed structure along with the key contact sites and mechanistic features identified should prove highly advantageous to the design and rational development of safe and effective therapeutics that target TMPRSS2 and avoid inhibition of other trypsin-dependent processes. [Image: see text] |
format | Online Article Text |
id | pubmed-7862521 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-78625212021-02-05 Structural modeling and analysis of the SARS-CoV-2 cell entry inhibitor camostat bound to the trypsin-like protease TMPRSS2 Escalante, Diego E. Ferguson, David M. Med Chem Res Original Research The type II transmembrane serine protease TMPRSS2 facilitates the entry of coronaviruses, such as SARS-CoV-2, into host cells by cleaving the S(1)/S(2) interface of the viral spike protein. Based on structural data derived from X-ray crystallographic data of related trypsin-like proteases, a homology model of TMPRSS2 is described and validated using the broad spectrum COVID-19 drug candidate camostat as a probe. Both active site recognition and catalytic function are examined using quantum mechanics/molecular mechanics molecular dynamic (QM/MM MD) simulations of camostat and its active metabolite, 4-(4-guanidinobenzoyloxy) phenylacetate (GBPA). Substrate binding is shown to be primarily stabilized through salt bridge formation between the shared guanidino pharmacophore and D435 in pocket A (flanking the catalytic S441). Based on the binding mode of GBPA, residues K342 and W461 have been identified as potential contacts involved in TMPRSS2 selective binding and activity. Additional data is reported that indicates the transition state structure is stabilized through H-bonding interactions with the backbone N–H groups within an oxyanion hole following bottom-side attack of the carbonyl by S441. This is supported by prior work on related serine proteases suggesting further strategies to exploit in the design of more potent inhibitors. Taken overall, the proposed structure along with the key contact sites and mechanistic features identified should prove highly advantageous to the design and rational development of safe and effective therapeutics that target TMPRSS2 and avoid inhibition of other trypsin-dependent processes. [Image: see text] Springer US 2021-02-05 2021 /pmc/articles/PMC7862521/ /pubmed/33564221 http://dx.doi.org/10.1007/s00044-021-02708-7 Text en © The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Original Research Escalante, Diego E. Ferguson, David M. Structural modeling and analysis of the SARS-CoV-2 cell entry inhibitor camostat bound to the trypsin-like protease TMPRSS2 |
title | Structural modeling and analysis of the SARS-CoV-2 cell entry inhibitor camostat bound to the trypsin-like protease TMPRSS2 |
title_full | Structural modeling and analysis of the SARS-CoV-2 cell entry inhibitor camostat bound to the trypsin-like protease TMPRSS2 |
title_fullStr | Structural modeling and analysis of the SARS-CoV-2 cell entry inhibitor camostat bound to the trypsin-like protease TMPRSS2 |
title_full_unstemmed | Structural modeling and analysis of the SARS-CoV-2 cell entry inhibitor camostat bound to the trypsin-like protease TMPRSS2 |
title_short | Structural modeling and analysis of the SARS-CoV-2 cell entry inhibitor camostat bound to the trypsin-like protease TMPRSS2 |
title_sort | structural modeling and analysis of the sars-cov-2 cell entry inhibitor camostat bound to the trypsin-like protease tmprss2 |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7862521/ https://www.ncbi.nlm.nih.gov/pubmed/33564221 http://dx.doi.org/10.1007/s00044-021-02708-7 |
work_keys_str_mv | AT escalantediegoe structuralmodelingandanalysisofthesarscov2cellentryinhibitorcamostatboundtothetrypsinlikeproteasetmprss2 AT fergusondavidm structuralmodelingandanalysisofthesarscov2cellentryinhibitorcamostatboundtothetrypsinlikeproteasetmprss2 |