Cargando…
Logarithmically regular morphisms
We consider the stack [Formula: see text] parametrizing log schemes over a log scheme X, and weak and strong properties of log morphisms via [Formula: see text] , as defined by Olsson. We give a concrete combinatorial presentation of [Formula: see text] , and prove a simple criterion of when weak an...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7862543/ https://www.ncbi.nlm.nih.gov/pubmed/33603252 http://dx.doi.org/10.1007/s00208-020-02116-z |
Sumario: | We consider the stack [Formula: see text] parametrizing log schemes over a log scheme X, and weak and strong properties of log morphisms via [Formula: see text] , as defined by Olsson. We give a concrete combinatorial presentation of [Formula: see text] , and prove a simple criterion of when weak and strong properties of log morphisms coincide. We then apply this result to the study of logarithmic regularity, derive its main properties, and give a chart criterion analogous to Kato’s chart criterion of logarithmic smoothness. |
---|