Cargando…

Logarithmically regular morphisms

We consider the stack [Formula: see text] parametrizing log schemes over a log scheme X, and weak and strong properties of log morphisms via [Formula: see text] , as defined by Olsson. We give a concrete combinatorial presentation of [Formula: see text] , and prove a simple criterion of when weak an...

Descripción completa

Detalles Bibliográficos
Autores principales: Molcho, Sam, Temkin, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7862543/
https://www.ncbi.nlm.nih.gov/pubmed/33603252
http://dx.doi.org/10.1007/s00208-020-02116-z
Descripción
Sumario:We consider the stack [Formula: see text] parametrizing log schemes over a log scheme X, and weak and strong properties of log morphisms via [Formula: see text] , as defined by Olsson. We give a concrete combinatorial presentation of [Formula: see text] , and prove a simple criterion of when weak and strong properties of log morphisms coincide. We then apply this result to the study of logarithmic regularity, derive its main properties, and give a chart criterion analogous to Kato’s chart criterion of logarithmic smoothness.