Cargando…
Discovery of novel chemical reactions by deep generative recurrent neural network
The “creativity” of Artificial Intelligence (AI) in terms of generating de novo molecular structures opened a novel paradigm in compound design, weaknesses (stability & feasibility issues of such structures) notwithstanding. Here we show that “creative” AI may be as successfully taught to enumer...
Autores principales: | Bort, William, Baskin, Igor I., Gimadiev, Timur, Mukanov, Artem, Nugmanov, Ramil, Sidorov, Pavel, Marcou, Gilles, Horvath, Dragos, Klimchuk, Olga, Madzhidov, Timur, Varnek, Alexandre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7862614/ https://www.ncbi.nlm.nih.gov/pubmed/33542271 http://dx.doi.org/10.1038/s41598-021-81889-y |
Ejemplares similares
-
Comprehensive Analysis of Applicability Domains of QSPR Models for Chemical Reactions
por: Rakhimbekova, Assima, et al.
Publicado: (2020) -
Prediction of Optimal Conditions of Hydrogenation Reaction Using the Likelihood Ranking Approach
por: Afonina, Valentina A., et al.
Publicado: (2021) -
Parallel Generative Topographic Mapping: An Efficient Approach for Big Data Handling
por: Lin, Arkadii, et al.
Publicado: (2020) -
A unified approach to the applicability domain problem of QSAR models
por: Horvath, Dragos, et al.
Publicado: (2010) -
Generative Topographic Mapping of the Docking Conformational Space
por: Horvath, Dragos, et al.
Publicado: (2019)