Cargando…
New machine learning and physics-based scoring functions for drug discovery
Scoring functions are essential for modern in silico drug discovery. However, the accurate prediction of binding affinity by scoring functions remains a challenging task. The performance of scoring functions is very heterogeneous across different target classes. Scoring functions based on precise ph...
Autores principales: | Guedes, Isabella A., Barreto, André M. S., Marinho, Diogo, Krempser, Eduardo, Kuenemann, Mélaine A., Sperandio, Olivier, Dardenne, Laurent E., Miteva, Maria A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7862620/ https://www.ncbi.nlm.nih.gov/pubmed/33542326 http://dx.doi.org/10.1038/s41598-021-82410-1 |
Ejemplares similares
-
Drug-Like Protein–Protein Interaction Modulators: Challenges and Opportunities for Drug Discovery and Chemical Biology
por: Villoutreix, Bruno O, et al.
Publicado: (2014) -
Imbalance in chemical space: How to facilitate the identification of protein-protein interaction inhibitors
por: Kuenemann, Mélaine A., et al.
Publicado: (2016) -
iPPI-DB: an online database of modulators of protein–protein interactions
por: Labbé, Céline M., et al.
Publicado: (2016) -
An exploration of the 3D chemical space has highlighted a specific shape profile for the compounds intended to inhibit protein-protein interactions
por: Kuenemann, Mélaine A, et al.
Publicado: (2015) -
Empirical Scoring Functions for Structure-Based Virtual Screening: Applications, Critical Aspects, and Challenges
por: Guedes, Isabella A., et al.
Publicado: (2018)