Cargando…
How machine-learning recommendations influence clinician treatment selections: the example of antidepressant selection
Decision support systems embodying machine learning models offer the promise of an improved standard of care for major depressive disorder, but little is known about how clinicians’ treatment decisions will be influenced by machine learning recommendations and explanations. We used a within-subject...
Autores principales: | Jacobs, Maia, Pradier, Melanie F., McCoy, Thomas H., Perlis, Roy H., Doshi-Velez, Finale, Gajos, Krzysztof Z. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7862671/ https://www.ncbi.nlm.nih.gov/pubmed/33542191 http://dx.doi.org/10.1038/s41398-021-01224-x |
Ejemplares similares
-
Predicting treatment dropout after antidepressant initiation
por: Pradier, Melanie F., et al.
Publicado: (2020) -
Assessment of a Prediction Model for Antidepressant Treatment Stability Using Supervised Topic Models
por: Hughes, Michael C., et al.
Publicado: (2020) -
Research Letter: Application of GPT-4 to select next-step antidepressant treatment in major depression
por: Perlis, Roy H.
Publicado: (2023) -
Combining Kernel and Model Based Learning for HIV Therapy Selection
por: Parbhoo, Sonali, et al.
Publicado: (2017) -
Assessment of Time-Series Machine Learning Methods for Forecasting Hospital Discharge Volume
por: McCoy, Thomas H., et al.
Publicado: (2018)