Cargando…
Explainable drug sensitivity prediction through cancer pathway enrichment
Computational approaches to predict drug sensitivity can promote precision anticancer therapeutics. Generalizable and explainable models are of critical importance for translation to guide personalized treatment and are often overlooked in favor of prediction performance. Here, we propose PathDSP: a...
Autores principales: | Tang, Yi-Ching, Gottlieb, Assaf |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7862690/ https://www.ncbi.nlm.nih.gov/pubmed/33542382 http://dx.doi.org/10.1038/s41598-021-82612-7 |
Ejemplares similares
-
Molecular pathways enhance drug response prediction using transfer learning from cell lines to tumors and patient-derived xenografts
por: Tang, Yi-Ching, et al.
Publicado: (2022) -
Tissue-Specific Variations in Transcription Factors Elucidate Complex Immune System Regulation
por: Lu, Hengwei, et al.
Publicado: (2022) -
PREDICT: a method for inferring novel drug indications with application to personalized medicine
por: Gottlieb, Assaf, et al.
Publicado: (2011) -
Predicting selective drug targets in cancer through metabolic networks
por: Folger, Ori, et al.
Publicado: (2011) -
Essentiality and Transcriptome-Enriched Pathway Scores Predict Drug-Combination Synergy
por: Li, Jin, et al.
Publicado: (2020)