Cargando…
The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation
Evaluating binary classifications is a pivotal task in statistics and machine learning, because it can influence decisions in multiple areas, including for example prognosis or therapies of patients in critical conditions. The scientific community has not agreed on a general-purpose statistical indi...
Autores principales: | Chicco, Davide, Tötsch, Niklas, Jurman, Giuseppe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7863449/ https://www.ncbi.nlm.nih.gov/pubmed/33541410 http://dx.doi.org/10.1186/s13040-021-00244-z |
Ejemplares similares
-
The Matthews correlation coefficient (MCC) should replace the ROC AUC as the standard metric for assessing binary classification
por: Chicco, Davide, et al.
Publicado: (2023) -
The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation
por: Chicco, Davide, et al.
Publicado: (2020) -
An Invitation to Greater Use of Matthews Correlation Coefficient in Robotics and Artificial Intelligence
por: Chicco, Davide, et al.
Publicado: (2022) -
Bookmaking : the illustrated guide to design
por: Lee, Marshall
Publicado: (1979) -
A Comparison of MCC and CEN Error Measures in Multi-Class Prediction
por: Jurman, Giuseppe, et al.
Publicado: (2012)