Cargando…
Prediction of adverse drug reactions based on knowledge graph embedding
BACKGROUND: Adverse drug reactions (ADRs) are an important concern in the medication process and can pose a substantial economic burden for patients and hospitals. Because of the limitations of clinical trials, it is difficult to identify all possible ADRs of a drug before it is marketed. We develop...
Autores principales: | Zhang, Fei, Sun, Bo, Diao, Xiaolin, Zhao, Wei, Shu, Ting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7863488/ https://www.ncbi.nlm.nih.gov/pubmed/33541342 http://dx.doi.org/10.1186/s12911-021-01402-3 |
Ejemplares similares
-
Knowledge graph prediction of unknown adverse drug reactions and validation in electronic health records
por: Bean, Daniel M., et al.
Publicado: (2017) -
Ensembles of knowledge graph embedding models improve predictions for drug discovery
por: Rivas-Barragan, Daniel, et al.
Publicado: (2022) -
Knowledge Graph Embeddings for ICU readmission prediction
por: Carvalho, Ricardo M. S., et al.
Publicado: (2023) -
Adverse Drug Reaction Discovery Using a Tumor-Biomarker Knowledge Graph
por: Wang, Meng, et al.
Publicado: (2021) -
Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction in realistic settings
por: Celebi, Remzi, et al.
Publicado: (2019)