Cargando…
LoRaWANSim: A Flexible Simulator for LoRaWAN Networks
Among the low power wide area network communication protocols for large scale Internet of Things, LoRaWAN is considered one of the most promising, owing to its flexibility and energy-saving capabilities. For these reasons, during recent years, the scientific community has invested efforts into asses...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7864028/ https://www.ncbi.nlm.nih.gov/pubmed/33498388 http://dx.doi.org/10.3390/s21030695 |
_version_ | 1783647590626099200 |
---|---|
author | Marini, Riccardo Mikhaylov, Konstantin Pasolini, Gianni Buratti, Chiara |
author_facet | Marini, Riccardo Mikhaylov, Konstantin Pasolini, Gianni Buratti, Chiara |
author_sort | Marini, Riccardo |
collection | PubMed |
description | Among the low power wide area network communication protocols for large scale Internet of Things, LoRaWAN is considered one of the most promising, owing to its flexibility and energy-saving capabilities. For these reasons, during recent years, the scientific community has invested efforts into assessing the fundamental performance limits and understanding the trade-offs between the parameters and performance of LoRaWAN communication for different application scenarios. However, this task cannot be effectively accomplished utilizing only analytical methods, and precise network simulators are needed. To that end, this paper presents LoRaWANSim, a LoRaWAN simulator implemented in MATLAB, developed to characterize the behavior of LoRaWAN networks, accounting for physical, medium access control and network aspects. In particular, since many simulators described in the literature are deployed for specific research purposes, they are usually oversimplified and hold a number of assumptions affecting the accuracy of their results. In contrast, our simulator has been developed for the sake of completeness and it is oriented towards an accurate representation of the LoRaWAN at the different layers. After a detailed description of the simulator, we report a validation of the simulator itself and we then conclude by presenting some results of its use revealing notable and non-intuitive trade-offs present in LoRaWAN. Such simulator will be made available via open access to the research community. |
format | Online Article Text |
id | pubmed-7864028 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-78640282021-02-06 LoRaWANSim: A Flexible Simulator for LoRaWAN Networks Marini, Riccardo Mikhaylov, Konstantin Pasolini, Gianni Buratti, Chiara Sensors (Basel) Article Among the low power wide area network communication protocols for large scale Internet of Things, LoRaWAN is considered one of the most promising, owing to its flexibility and energy-saving capabilities. For these reasons, during recent years, the scientific community has invested efforts into assessing the fundamental performance limits and understanding the trade-offs between the parameters and performance of LoRaWAN communication for different application scenarios. However, this task cannot be effectively accomplished utilizing only analytical methods, and precise network simulators are needed. To that end, this paper presents LoRaWANSim, a LoRaWAN simulator implemented in MATLAB, developed to characterize the behavior of LoRaWAN networks, accounting for physical, medium access control and network aspects. In particular, since many simulators described in the literature are deployed for specific research purposes, they are usually oversimplified and hold a number of assumptions affecting the accuracy of their results. In contrast, our simulator has been developed for the sake of completeness and it is oriented towards an accurate representation of the LoRaWAN at the different layers. After a detailed description of the simulator, we report a validation of the simulator itself and we then conclude by presenting some results of its use revealing notable and non-intuitive trade-offs present in LoRaWAN. Such simulator will be made available via open access to the research community. MDPI 2021-01-20 /pmc/articles/PMC7864028/ /pubmed/33498388 http://dx.doi.org/10.3390/s21030695 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Marini, Riccardo Mikhaylov, Konstantin Pasolini, Gianni Buratti, Chiara LoRaWANSim: A Flexible Simulator for LoRaWAN Networks |
title | LoRaWANSim: A Flexible Simulator for LoRaWAN Networks |
title_full | LoRaWANSim: A Flexible Simulator for LoRaWAN Networks |
title_fullStr | LoRaWANSim: A Flexible Simulator for LoRaWAN Networks |
title_full_unstemmed | LoRaWANSim: A Flexible Simulator for LoRaWAN Networks |
title_short | LoRaWANSim: A Flexible Simulator for LoRaWAN Networks |
title_sort | lorawansim: a flexible simulator for lorawan networks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7864028/ https://www.ncbi.nlm.nih.gov/pubmed/33498388 http://dx.doi.org/10.3390/s21030695 |
work_keys_str_mv | AT mariniriccardo lorawansimaflexiblesimulatorforlorawannetworks AT mikhaylovkonstantin lorawansimaflexiblesimulatorforlorawannetworks AT pasolinigianni lorawansimaflexiblesimulatorforlorawannetworks AT burattichiara lorawansimaflexiblesimulatorforlorawannetworks |