Cargando…
Thermoresponsive and Conductive Chitosan-Polyurethane Biocompatible Thin Films with Potential Coating Application
Conductive thin films have great potential for application in the biomedical field. Herein, we designed thermoresponsive and conductive thin films with hydrophilicity, strain sensing, and biocompatibility. The crosslinked dense thin films were synthesized and prepared through a Schiff base reaction...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7864029/ https://www.ncbi.nlm.nih.gov/pubmed/33498347 http://dx.doi.org/10.3390/polym13030326 |
_version_ | 1783647590844203008 |
---|---|
author | Xu, Junpeng Fu, Chih-Yu Tsai, Yu-Liang Wong, Chui-Wei Hsu, Shan-hui |
author_facet | Xu, Junpeng Fu, Chih-Yu Tsai, Yu-Liang Wong, Chui-Wei Hsu, Shan-hui |
author_sort | Xu, Junpeng |
collection | PubMed |
description | Conductive thin films have great potential for application in the biomedical field. Herein, we designed thermoresponsive and conductive thin films with hydrophilicity, strain sensing, and biocompatibility. The crosslinked dense thin films were synthesized and prepared through a Schiff base reaction and ionic interaction from dialdehyde polyurethane, N-carboxyethyl chitosan, and double-bonded chitosan grafted polypyrrole. The thin films were air-dried under room temperature. These thin films showed hydrophilicity and conductivity (above 2.50 mS/cm) as well as responsiveness to the deformation. The tensile break strength (9.72 MPa to 15.07 MPa) and tensile elongation (5.76% to 12.77%) of conductive thin films were enhanced by heating them from 25 °C to 50 °C. In addition, neural stem cells cultured on the conductive thin films showed cell clustering, proliferation, and differentiation. The application of the materials as a conductive surface coating was verified by different coating strategies. The conductive thin films are potential candidates for surface modification and biocompatible polymer coating. |
format | Online Article Text |
id | pubmed-7864029 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-78640292021-02-06 Thermoresponsive and Conductive Chitosan-Polyurethane Biocompatible Thin Films with Potential Coating Application Xu, Junpeng Fu, Chih-Yu Tsai, Yu-Liang Wong, Chui-Wei Hsu, Shan-hui Polymers (Basel) Article Conductive thin films have great potential for application in the biomedical field. Herein, we designed thermoresponsive and conductive thin films with hydrophilicity, strain sensing, and biocompatibility. The crosslinked dense thin films were synthesized and prepared through a Schiff base reaction and ionic interaction from dialdehyde polyurethane, N-carboxyethyl chitosan, and double-bonded chitosan grafted polypyrrole. The thin films were air-dried under room temperature. These thin films showed hydrophilicity and conductivity (above 2.50 mS/cm) as well as responsiveness to the deformation. The tensile break strength (9.72 MPa to 15.07 MPa) and tensile elongation (5.76% to 12.77%) of conductive thin films were enhanced by heating them from 25 °C to 50 °C. In addition, neural stem cells cultured on the conductive thin films showed cell clustering, proliferation, and differentiation. The application of the materials as a conductive surface coating was verified by different coating strategies. The conductive thin films are potential candidates for surface modification and biocompatible polymer coating. MDPI 2021-01-20 /pmc/articles/PMC7864029/ /pubmed/33498347 http://dx.doi.org/10.3390/polym13030326 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Xu, Junpeng Fu, Chih-Yu Tsai, Yu-Liang Wong, Chui-Wei Hsu, Shan-hui Thermoresponsive and Conductive Chitosan-Polyurethane Biocompatible Thin Films with Potential Coating Application |
title | Thermoresponsive and Conductive Chitosan-Polyurethane Biocompatible Thin Films with Potential Coating Application |
title_full | Thermoresponsive and Conductive Chitosan-Polyurethane Biocompatible Thin Films with Potential Coating Application |
title_fullStr | Thermoresponsive and Conductive Chitosan-Polyurethane Biocompatible Thin Films with Potential Coating Application |
title_full_unstemmed | Thermoresponsive and Conductive Chitosan-Polyurethane Biocompatible Thin Films with Potential Coating Application |
title_short | Thermoresponsive and Conductive Chitosan-Polyurethane Biocompatible Thin Films with Potential Coating Application |
title_sort | thermoresponsive and conductive chitosan-polyurethane biocompatible thin films with potential coating application |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7864029/ https://www.ncbi.nlm.nih.gov/pubmed/33498347 http://dx.doi.org/10.3390/polym13030326 |
work_keys_str_mv | AT xujunpeng thermoresponsiveandconductivechitosanpolyurethanebiocompatiblethinfilmswithpotentialcoatingapplication AT fuchihyu thermoresponsiveandconductivechitosanpolyurethanebiocompatiblethinfilmswithpotentialcoatingapplication AT tsaiyuliang thermoresponsiveandconductivechitosanpolyurethanebiocompatiblethinfilmswithpotentialcoatingapplication AT wongchuiwei thermoresponsiveandconductivechitosanpolyurethanebiocompatiblethinfilmswithpotentialcoatingapplication AT hsushanhui thermoresponsiveandconductivechitosanpolyurethanebiocompatiblethinfilmswithpotentialcoatingapplication |