Cargando…
A CNN-Based Length-Aware Cascade Road Damage Detection Approach
Accurate and robust detection of road damage is essential for public transportation safety. Currently, deep convolutional neural networks (CNNs)-based road damage detection algorithms to localize and classify damage with a bounding box have achieved remarkable progress. However, research in this fie...
Autores principales: | Xu, Huiqing, Chen, Bin, Qin, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7864040/ https://www.ncbi.nlm.nih.gov/pubmed/33498363 http://dx.doi.org/10.3390/s21030689 |
Ejemplares similares
-
Road Traffic Sign Detection Method Based on RTS R-CNN Instance Segmentation Network
por: Zhang, Guirong, et al.
Publicado: (2023) -
Detection of Image Artifacts Using Improved Cascade Region-Based CNN for Quality Assessment of Endoscopic Images
por: Sun, Wei, et al.
Publicado: (2023) -
Detection of Highway Pavement Damage Based on a CNN Using Grayscale and HOG Features
por: Chen, Guo-Hong, et al.
Publicado: (2022) -
DSSS Signal Detection Based on CNN
por: Gu, Han-Qing, et al.
Publicado: (2023) -
Intraclass Clustering-Based CNN Approach for Detection of Malignant Melanoma
por: Bandy, Adrian D., et al.
Publicado: (2023)