Cargando…
Data-Driven Approaches to Predict Thermal Maturity Indices of Organic Matter Using Artificial Neural Networks
[Image: see text] Prediction of thermal maturity index parameters in organic shales plays a critical role in defining the hydrocarbon prospect and proper economic evaluation of the field. Hydrocarbon potential in shales is evaluated using the percentage of organic indices such as total organic carbo...
Autores principales: | Tariq, Zeeshan, Mahmoud, Mohamed, Abouelresh, Mohamed, Abdulraheem, Abdulazeez |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7864083/ https://www.ncbi.nlm.nih.gov/pubmed/33564733 http://dx.doi.org/10.1021/acsomega.0c03751 |
Ejemplares similares
-
Geomechanics of
Organic Matters Contained in Shales:
A Molecular-Level Investigation
por: Aslanov, Elshad, et al.
Publicado: (2022) -
Machine learning accelerated approach to infer nuclear magnetic resonance porosity for a middle eastern carbonate reservoir
por: Mustafa, Ayyaz, et al.
Publicado: (2023) -
Study of the Mechanical Behavior of Organic Matters
Contained in Source Rocks: New Insights into the Role of Bitumen
por: Aslanov, Elshad, et al.
Publicado: (2022) -
Machine Learning-Based Propped Fracture Conductivity
Correlations of Several Shale Formations
por: Desouky, Mahmoud, et al.
Publicado: (2021) -
Dicationic Surfactants as an Additive in Fracturing
Fluids to Mitigate Clay Swelling: A Petrophysical and Rock Mechanical
Assessment
por: Tariq, Zeeshan, et al.
Publicado: (2021)