Cargando…

Towards Rational Biosurfactant Design—Predicting Solubilization in Rhamnolipid Solutions

The efficiency of micellar solubilization is dictated inter alia by the properties of the solubilizate, the type of surfactant, and environmental conditions of the process. We, therefore, hypothesized that using the descriptors of the aforementioned features we can predict the solubilization efficie...

Descripción completa

Detalles Bibliográficos
Autores principales: Kłosowska-Chomiczewska, Ilona E., Kotewicz-Siudowska, Adrianna, Artichowicz, Wojciech, Macierzanka, Adam, Głowacz-Różyńska, Agnieszka, Szumała, Patrycja, Mędrzycka, Krystyna, Hallmann, Elżbieta, Karpenko, Elena, Jungnickel, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7864340/
https://www.ncbi.nlm.nih.gov/pubmed/33498574
http://dx.doi.org/10.3390/molecules26030534
_version_ 1783647645831528448
author Kłosowska-Chomiczewska, Ilona E.
Kotewicz-Siudowska, Adrianna
Artichowicz, Wojciech
Macierzanka, Adam
Głowacz-Różyńska, Agnieszka
Szumała, Patrycja
Mędrzycka, Krystyna
Hallmann, Elżbieta
Karpenko, Elena
Jungnickel, Christian
author_facet Kłosowska-Chomiczewska, Ilona E.
Kotewicz-Siudowska, Adrianna
Artichowicz, Wojciech
Macierzanka, Adam
Głowacz-Różyńska, Agnieszka
Szumała, Patrycja
Mędrzycka, Krystyna
Hallmann, Elżbieta
Karpenko, Elena
Jungnickel, Christian
author_sort Kłosowska-Chomiczewska, Ilona E.
collection PubMed
description The efficiency of micellar solubilization is dictated inter alia by the properties of the solubilizate, the type of surfactant, and environmental conditions of the process. We, therefore, hypothesized that using the descriptors of the aforementioned features we can predict the solubilization efficiency, expressed as molar solubilization ratio (MSR). In other words, we aimed at creating a model to find the optimal surfactant and environmental conditions in order to solubilize the substance of interest (oil, drug, etc.). We focused specifically on the solubilization in biosurfactant solutions. We collected data from literature covering the last 38 years and supplemented them with our experimental data for different biosurfactant preparations. Evolutionary algorithm (EA) and kernel support vector machines (KSVM) were used to create predictive relationships. The descriptors of biosurfactant (logP(BS), measure of purity), solubilizate (logP(sol), molecular volume), and descriptors of conditions of the measurement (T and pH) were used for modelling. We have shown that the MSR can be successfully predicted using EAs, with a mean R(2)(val) of 0.773 ± 0.052. The parameters influencing the solubilization efficiency were ranked upon their significance. This represents the first attempt in literature to predict the MSR with the MSR calculator delivered as a result of our research.
format Online
Article
Text
id pubmed-7864340
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-78643402021-02-06 Towards Rational Biosurfactant Design—Predicting Solubilization in Rhamnolipid Solutions Kłosowska-Chomiczewska, Ilona E. Kotewicz-Siudowska, Adrianna Artichowicz, Wojciech Macierzanka, Adam Głowacz-Różyńska, Agnieszka Szumała, Patrycja Mędrzycka, Krystyna Hallmann, Elżbieta Karpenko, Elena Jungnickel, Christian Molecules Article The efficiency of micellar solubilization is dictated inter alia by the properties of the solubilizate, the type of surfactant, and environmental conditions of the process. We, therefore, hypothesized that using the descriptors of the aforementioned features we can predict the solubilization efficiency, expressed as molar solubilization ratio (MSR). In other words, we aimed at creating a model to find the optimal surfactant and environmental conditions in order to solubilize the substance of interest (oil, drug, etc.). We focused specifically on the solubilization in biosurfactant solutions. We collected data from literature covering the last 38 years and supplemented them with our experimental data for different biosurfactant preparations. Evolutionary algorithm (EA) and kernel support vector machines (KSVM) were used to create predictive relationships. The descriptors of biosurfactant (logP(BS), measure of purity), solubilizate (logP(sol), molecular volume), and descriptors of conditions of the measurement (T and pH) were used for modelling. We have shown that the MSR can be successfully predicted using EAs, with a mean R(2)(val) of 0.773 ± 0.052. The parameters influencing the solubilization efficiency were ranked upon their significance. This represents the first attempt in literature to predict the MSR with the MSR calculator delivered as a result of our research. MDPI 2021-01-20 /pmc/articles/PMC7864340/ /pubmed/33498574 http://dx.doi.org/10.3390/molecules26030534 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kłosowska-Chomiczewska, Ilona E.
Kotewicz-Siudowska, Adrianna
Artichowicz, Wojciech
Macierzanka, Adam
Głowacz-Różyńska, Agnieszka
Szumała, Patrycja
Mędrzycka, Krystyna
Hallmann, Elżbieta
Karpenko, Elena
Jungnickel, Christian
Towards Rational Biosurfactant Design—Predicting Solubilization in Rhamnolipid Solutions
title Towards Rational Biosurfactant Design—Predicting Solubilization in Rhamnolipid Solutions
title_full Towards Rational Biosurfactant Design—Predicting Solubilization in Rhamnolipid Solutions
title_fullStr Towards Rational Biosurfactant Design—Predicting Solubilization in Rhamnolipid Solutions
title_full_unstemmed Towards Rational Biosurfactant Design—Predicting Solubilization in Rhamnolipid Solutions
title_short Towards Rational Biosurfactant Design—Predicting Solubilization in Rhamnolipid Solutions
title_sort towards rational biosurfactant design—predicting solubilization in rhamnolipid solutions
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7864340/
https://www.ncbi.nlm.nih.gov/pubmed/33498574
http://dx.doi.org/10.3390/molecules26030534
work_keys_str_mv AT kłosowskachomiczewskailonae towardsrationalbiosurfactantdesignpredictingsolubilizationinrhamnolipidsolutions
AT kotewiczsiudowskaadrianna towardsrationalbiosurfactantdesignpredictingsolubilizationinrhamnolipidsolutions
AT artichowiczwojciech towardsrationalbiosurfactantdesignpredictingsolubilizationinrhamnolipidsolutions
AT macierzankaadam towardsrationalbiosurfactantdesignpredictingsolubilizationinrhamnolipidsolutions
AT głowaczrozynskaagnieszka towardsrationalbiosurfactantdesignpredictingsolubilizationinrhamnolipidsolutions
AT szumałapatrycja towardsrationalbiosurfactantdesignpredictingsolubilizationinrhamnolipidsolutions
AT medrzyckakrystyna towardsrationalbiosurfactantdesignpredictingsolubilizationinrhamnolipidsolutions
AT hallmannelzbieta towardsrationalbiosurfactantdesignpredictingsolubilizationinrhamnolipidsolutions
AT karpenkoelena towardsrationalbiosurfactantdesignpredictingsolubilizationinrhamnolipidsolutions
AT jungnickelchristian towardsrationalbiosurfactantdesignpredictingsolubilizationinrhamnolipidsolutions