Cargando…
Surface-Related Kinetic Models for Anaerobic Digestion of Microcrystalline Cellulose: The Role of Particle Size
In this work, for modelling the anaerobic digestion of microcrystalline cellulose, two surface-related models based on cylindrical and spherical particles were developed and compared with the first-order kinetics model. A unique dataset consisting of particles with different sizes, the same crystall...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7864345/ https://www.ncbi.nlm.nih.gov/pubmed/33498568 http://dx.doi.org/10.3390/ma14030487 |
Sumario: | In this work, for modelling the anaerobic digestion of microcrystalline cellulose, two surface-related models based on cylindrical and spherical particles were developed and compared with the first-order kinetics model. A unique dataset consisting of particles with different sizes, the same crystallinity and polymerisation degree was used to validate the models. Both newly developed models outperformed the first-order kinetics model. Analysis of the kinetic constant data revealed that particle size is a key factor determining the anaerobic digestion kinetics of crystalline cellulose. Hence, crystalline cellulose particle size should be considered in the development and optimization of lignocellulose pre-treatment methods. Further research is necessary for the assessment of impact of the crystalline cellulose particle size and surface properties on the microbial cellulose hydrolysis rate. |
---|